
Volume 4, Number 28 http://isedj.org/4/28/ July 7, 2006

In this issue:

Running Legacy COBOL Programs by Proxy with COBOL.NET

John D. Haney
Northern Arizona University

Flagstaff, AZ 86011-5066, USA

Abstract: Microsoft’s .NET Integrated Development Environment (IDE) provides a process where
old legacy COBOL programs can appear as if they were written in a contemporary language such as
C#. This is accomplished within the .NET environment by creating a solution that consists of two
projects. The first contains the C# program with the graphical user interface. The second contains
the legacy program and a COBOL proxy program that provides the link between the C# program
and the legacy program. A COBOL data object class supplies the mechanism for the transference
of data between the proxy program and the C# program. By the use of this process only slight
modifications to the legacy program are necessary to run a legacy COBOL program by proxy. This
project would most appropriately be integrated in an advanced programming course.

Keywords: COBOL, .NET, C#, legacy, proxy

Recommended Citation: Haney (2006). Running Legacy COBOL Programs by Proxy with
COBOL.NET. Information Systems Education Journal, 4 (28). http://isedj.org/4/28/. ISSN:
1545-679X. (Also appears in The Proceedings of ISECON 2005: §2533. ISSN: 1542-7382.)

This issue is on the Internet at http://isedj.org/4/28/

ISEDJ 4 (28) Information Systems Education Journal 2

The Information Systems Education Journal (ISEDJ) is a peer-reviewed academic journal
published by the Education Special Interest Group (EDSIG) of the Association of Information
Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1545-679X. • First issue: 8 Sep 2003.
• Title: Information Systems Education Journal. Variants: IS Education Journal; ISEDJ. • Phys-
ical format: online. • Publishing frequency: irregular; as each article is approved, it is published
immediately and constitutes a complete separate issue of the current volume. • Single issue price:
free. • Subscription address: subscribe@isedj.org. • Subscription price: free. • Electronic access:
http://isedj.org/ • Contact person: Don Colton (editor@isedj.org)

2006 AITP Education Special Interest Group Board of Directors

Stuart A. Varden
Pace University

EDSIG President 2004

Paul M. Leidig
Grand Valley State University
EDSIG President 2005-2006

Don Colton
Brigham Young Univ Hawaii

Vice President 2005-2006

Wendy Ceccucci
Quinnipiac Univ
Director 2006-07

Ronald I. Frank
Pace University

Secretary 2005-06

Kenneth A. Grant
Ryerson University
Director 2005-06

Albert L. Harris
Appalachian St

JISE Editor

Thomas N. Janicki
Univ NC Wilmington

Director 2006-07

Jens O. Liegle
Georgia State Univ
Member Svcs 2006

Patricia Sendall
Merrimack College

Director 2006

Marcos Sivitanides
Texas St San Marcos
Chair ISECON 2006

Robert B. Sweeney
U South Alabama
Treasurer 2004-06

Gary Ury
NW Missouri St
Director 2006-07

Information Systems Education Journal 2005-2006 Editorial and Review Board

Don Colton
Brigham Young Univ Hawaii

Editor

Thomas N. Janicki
Univ of North Carolina Wilmington

Associate Editor

Samuel Abraham
Siena Heights U

Tonda Bone
Tarleton State U

Alan T. Burns
DePaul University

Lucia Dettori
DePaul University

Kenneth A. Grant
Ryerson Univ

Robert Grenier
Saint Ambrose Univ

Owen P. Hall, Jr
Pepperdine Univ

Jason B. Huett
Univ W Georgia

James Lawler
Pace University

Terri L. Lenox
Westminster Coll

Jens O. Liegle
Georgia State U

Denise R. McGinnis
Mesa State College

Therese D. O’Neil
Indiana Univ PA

Alan R. Peslak
Penn State Univ

Jack P. Russell
Northwestern St U

Jason H. Sharp
Tarleton State U

Charles Woratschek
Robert Morris Univ

EDSIG activities include the publication of ISEDJ, the organization and execution of the annual
ISECON conference held each fall, the publication of the Journal of Information Systems Education
(JISE), and the designation and honoring of an IS Educator of the Year. • The Foundation for
Information Technology Education has been the key sponsor of ISECON over the years. • The
Association for Information Technology Professionals (AITP) provides the corporate umbrella under
which EDSIG operates.

c© Copyright 2006 EDSIG. In the spirit of academic freedom, permission is granted to make and
distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document
is presented, and it is not modified in any substantial way.

c© 2006 EDSIG http://isedj.org/4/28/ July 7, 2006

ISEDJ 4 (28) Haney 3

Running Legacy COBOL Programs

by Proxy with COBOL.NET

John D. Haney

john.haney@nau.edu
College of Business Administration

Northern Arizona University

Flagstaff, AZ 86011-5066 USA

ABSTRACT

Microsoft’s .NET Integrated Development Environment (IDE) provides a process where old leg-

acy COBOL programs can appear as if they were written in a contemporary language such as

C#. This is accomplished within the .NET environment by creating a solution that consists of

two projects. The first contains the C# program with the graphical user interface. The second

contains the legacy program and a COBOL proxy program that provides the link between the

C# program and the legacy program. A COBOL data object class supplies the mechanism for

the transference of data between the proxy program and the C# program. By the use of this

process only slight modifications to the legacy program are necessary to run a legacy COBOL

program by proxy. This project would most appropriately be integrated in an advanced pro-

gramming course.

Keywords: COBOL, .NET, C#, legacy, proxy

1. INTRODUCTION

Since its inception, COBOL has been a major

part of the development of business infor-

mation systems (Malek, 2002), and has ad-

justed as changes in programming method-

ology have arisen. Most noteworthy was the

development of top-down design as a reac-

tion to ‘spaghetti’ code. The addition of

graphical user interfaces (GUIs) changed the

complexion of programming, and the world

of COBOL responded in two ways. First,

GUIs were added to COBOL compilers, such

as MicroFocus’s Dialog system. Another re-

sponse was to interface legacy COBOL sys-

tems with GUI oriented languages like Mi-

crosoft’s Visual Basic. The trend toward ob-

ject-oriented programming has also entered

the world of COBOL (Malek, 2002). The ini-

tial reaction was to place object-orientation

into the COBOL compilers (Price, 1997).

However, given the flexibility of Microsoft’s

.NET platform, it is only natural and logical

that there would be an inclusion of COBOL

into the .NET environment (Narayana,

2001).

Part of Microsoft’s philosophy for the .NET

Framework is that programmers should be

able to use the programming language best

suited to their application (Malek, 2002).

While C# and Visual Basic are the primary

programming languages within the .NET en-

vironment, other languages are available.

COBOL is one of those languages. Within

the .NET Framework applications can be de-

veloped as stand-alone Windows applications

or as web-based applications. The focus of

this study is on a Windows-based application

using MicroFocus’s Net Express with .NET.

The application, written in C#, controls the

execution of a legacy COBOL program. The

result is the execution of an old legacy

COBOL program with a contemporary user

interface, as if the program had been written

in an object-oriented language such as

VISUAL BASIC or C#. The heart of this

structure is a proxy class that can easily be

expanded to work with any existing COBOL

program, hence ‘running legacy COBOL pro-

grams by proxy.’

c© 2006 EDSIG http://isedj.org/4/28/ July 7, 2006

ISEDJ 4 (28) Haney 4

2. OVERVIEW OF SYSTEM

The process of running legacy COBOL pro-

grams within the .NET environment entails

three required components and one optional

component. The most obvious required

element is the legacy COBOL program. An-

other is a program written in the .NET envi-

ronment, such as a Visual Basic or C# pro-

gram. In this example a C# program is

used. These two must be tied together,

which is accomplished with a COBOL pro-

gram that works as a link between the C#

program and the legacy COBOL program.

An optional component is a COBOL object

class which provides for storing and retriev-

ing data between other components. The

relationship of these elements is shown in

the following diagram.

The functionality of the legacy COBOL pro-

gram is to update a payroll master file. A

transaction file drives a batch update that

adds, changes, and deletes records. The

update statistics: records added, changed,

and deleted along with a completion mes-

sage are sent back to the C# program. The

mechanics of the system are fairly straight-

forward. The C# program, which provides

the user interface, does two processes.

First, the transaction data file is located us-

ing a common dialog box, and the path and

file name are placed into a string data mem-

ber. The second process, triggered by click-

ing the Update button, calls the COBOL

proxy program. This sends the transaction

file name, as an argument, and returns the

update statistics into an instance of the data

object. After control is retuned back to the

C# program the statistics are then placed

into the textboxes.

The COBOL proxy program receives the

transaction file name and places it into its

linkage section. Then the proxy program

calls the COBOL legacy program, sending

the transaction file name and receiving back

the update statistics: records added,

changed, deleted, and a completion mes-

sage. These statistics are then placed into

the data object, which is returned back to

the C# program.

The COBOL legacy program receives the

transaction file name from the proxy pro-

gram and proceeds with the batch update to

an indexed sequential payroll master file.

The update is driven by a transaction file

which in this example deletes four records,

adds the records back in, and then changes

one of the records. The transaction file is

shown below.

Following is a printout of the payroll master

file after the update.

After the update, the legacy program returns

the update statistics: records added,

changed, deleted, and completion message

back to the proxy program.

The execution of a legacy program within

the .NET environment is within a .NET solu-

tion (csUpdate) that is comprised of two pro-

jects. The first project (csUpdate) is a C#

project, and the second project (cblUpdate)

contains three COBOL programs – the legacy

program, the proxy program, and the data

c© 2006 EDSIG http://isedj.org/4/28/ July 7, 2006

ISEDJ 4 (28) Haney 5

object class. The two projects must refer-

ence each other.

2.1 LEGACY PROGRAM

The functionality of the program is a batch

update to an indexed-sequential file, in this

case a payroll master file. The sequence of

the update is driven by a text transaction

file. Both the master and transaction files

reside on the same drive and in the same

folder. Since the name of the master file is

static it is hard coded into the program. The

transaction file is dynamic; therefore, the

name of the file is supplied from the client

program and routed through the proxy pro-

gram to the legacy program. The update

activity is written to a log file.

Some modifications must be made to the

legacy program in order to communicate

properly with the proxy program. These

modifications have been underlined for easy

reference. A linkage section is added to

communicate between the proxy program

and the legacy program. The Procedure Di-

vision statement is modified to reference the

linkage section.

In the A100-Main paragraph an Exit Program

statement replaces a Stop Run statement

which would normally end a program. The

Exit Program statement returns control to

the proxy program after the execution of the

program. In the B100-Initial paragraph the

path and file name of the transaction file are

placed into the filename field prior to open-

ing the transaction file. In the B300-End

paragraph the counts for the number of re-

cords added, changed, and deleted are

placed into the Linkage Section fields, along

with a message that the program is com-

pleted. The source code for the legacy pro-

gram appears in Appendix A.

2.2 PROXY (WRAPPER) PROGRAM

The Proxy or Wrapper program is the link

between the Client (C#) program and the

legacy (COBOL) program. The Proxy pro-

gram also interacts with the Data Object

class. The Proxy program creates an in-

stance of the Data Object in the Repository

which is referenced in the Linkage Section.

The Repository provides the means of relat-

ing internal names with external references.

The Proxy program receives the name of the

transaction file from the Client program and

returns the Data Object back to the Client

program. A Local-Storage section, which is

visible only within the method, is used to

contain the name of the transaction file, the

update counts, and the completion message

which are returned from the legacy program.

The Local-Storage functions as the common

data area with the legacy program. The

Transaction file name is placed from the

Linkage Section into the Local-Storage sec-

tion, and then the legacy program is called.

At the conclusion of the execution of the

legacy program an instance of the Data Ob-

ject is created, and the values are sent from

the Local-Storage section into the Data Ob-

ject. At the conclusion of the Proxy program

control is returned back to the Client pro-

gram. The source code appears in Appendix

B.

2.3 DATA OBJECT CLASS

The Data Object class serves only one pur-

pose, to store data that is transferred from

the Proxy program back to the Client pro-

gram. The data consists of a message and

three counts for the number of records

added, changed, or deleted in the payroll

master file. The message indicates that the

update completed successfully. The prop-

erty identifies the class data member that is

referenced in the Client program. A prop-

erty is a name that is used to qualify an ob-

ject reference so a value can be passed into

or out of the object. This allows the trans-

c© 2006 EDSIG http://isedj.org/4/28/ July 7, 2006

ISEDJ 4 (28) Haney 6

ference of data that is defined in a COBOL

program as Picture X or Picture 9 easily into

a C# program. The source code appears in

Appendix C.

2.4 CLIENT PROGRAM

The Client program is written in C#, al-

though it could just as easily have been writ-

ten in Visual Basic. A class string data

member is defined to hold the path and file-

name of the transaction data file which is

populated using a common dialog box.

In the update method an instance of the

Data Object is created. Then the COBOL

Proxy program is called by sending the

transaction file name and returning the up-

date counts and message into an instance of

the Data Object. The Class-ID is named

cblProxy and the Method-ID is named

CallUpdateProgram. Finally, the message

and update counts are assigned to the ap-

propriate textboxes from the data members

of the Data Object. The counts, being nu-

meric, must be converted to string. Only

the relevant code of the C# program is

shown in Appendix D.

3. SUMMARY AND CONCLUSIONS

Since COBOL programs will be part of busi-

ness information systems for the foreseeable

future, making COBOL part of contemporary

development environments is a natural con-

sequence. The focus of this study has been

the incorporation of COBOL into Microsoft’s

.NET Framework. Within that framework,

old legacy COBOL programs can be inte-

grated with contemporary languages such as

Visual Basic or C#. The process is accom-

plished by creating an application in a .NET

solution that consists of two projects. The

first project contains the .NET user interface,

in this case written in C#. The second pro-

ject contains two required COBOL programs,

and one optional program. The required

programs are the legacy program and a

proxy, or wrapper, class that is the link be-

tween the legacy program and the user in-

terface program. A third COBOL program is

an object class that is used to transfer data

between the C# program and the COBOL

proxy class. There are other means of

transferring data but this is the most effi-

cient, so it is not optional in this case.

Only slight modifications to the legacy

COBOL program are required to enable

communication between the legacy program

and the proxy class. The proxy class is the

heart of the interface. This COBOL object

class calls the COBOL legacy program, and

in turn is called by the C# program. The

transference of data between the legacy

program and the proxy class is via normal

COBOL processing with a Linkage Section.

The transference of data between the proxy

class and the C# program is accomplished

with a data object class. An instance of the

data object is created in both the proxy class

and the client (C#) program. Data is placed

into the data object in the proxy class and

then retrieved by the client program. The

result is the execution of a legacy COBOL

program ‘by proxy.’

The most appropriate location to place this

type of project into the information systems

curriculum would be an advanced program-

ming course. At this level the students

would have a good background in the .NET

environment and a working understanding of

updating a master file. This would ease the

process of interfacing .NET with a legacy

COBOL program. While understanding the

function of the legacy program to make

modifications is necessary, a full under-

standing of COBOL would not be required.

4. REFERENCES

Malek, Rick. “Why Object Orientation for

COBOL?” (2002), Online: http://www.c-

sharpcorner.com/Code/2002

/July/Art02-OOIntro.asp

Malek, Rick. “Calling Procedural COBOL

from VB.NET,” (2002) Online: http://

www.c-sharpcorner.com/Code/2002/Aug

/vb2cobol.asp

Malek, Rick. “Welcome to COBOL.NET Cor-

ner,” (2002) Online: http://www.c-

sharpcorner.com/Code/2002/June

/WelcomeCobolNet.asp

Micro Focus. (2003). Net Express With

.NET. Beaverton, OR.: Micro Focus In-

ternational Limited.

Price, Wilson T. (1997). Elements of Ob-

ject-Oriented COBOL. Orinda, CA.: Ob-

ject-Z Publishing.

c© 2006 EDSIG http://isedj.org/4/28/ July 7, 2006

ISEDJ 4 (28) Haney 7

Price, Wilson T. & Rippin, Wayne. (2004).

COBOL and .NET. Draper, UT.: Object-Z

Publishing.

Sharp, John & Jagger, Jon. (2002). VISUAL

C# .NET. Redmond, WA.: Microsoft

Press.

Surapaneni, Narayana Rao. “COBOL for Mi-

crosoft .NET,” (2001) Online: http://

www.c-sharpcorner.com/CobolNet

/Cobol4MSNETNRS.asp

c© 2006 EDSIG http://isedj.org/4/28/ July 7, 2006

ISEDJ 4 (28) Haney 8

Appendix A: Legacy Program

The functionality of the program is a batch update to an indexed-sequential file, in this case a

payroll master file. The sequence of the update is driven by a text transaction file. Both the

master and transaction files reside on the same drive and in the same folder. Since the name

of the master file is static it is hard coded into the program. The transaction file is dynamic;

therefore, the name of the file is supplied from the client program and routed through the

proxy program to the legacy program. The update activity is written to a log file. See section

2.1 above for additional descriptive information.

* Legacy program for batch payroll update.

* cblUpdate - This is a batch update to a random access file.
* The master file is a payroll file.
* The update is driven by a transaction file.
* The activity is written to a log file.

Identification Division.
Program-ID. cblUpdate.

Environment Division.
Input-Output Section.
File-Control.
Select 100-Payroll Assign to "Payroll.dta"
 Organization is Indexed
 Access Mode is Random
 Record Key is 100-Emp-ID.

Select 200-Transaction Assign to
 400-FileName

 Organization is line sequential.
 Select 300-Log Assign to "Log.dta"
 Organization is line sequential.
Data Division.
File Section.
Fd 100-Payroll.
01 100-Rec.
 05 100-Emp-ID Pic 9(5).
 05 Filler Pic X(47).

Fd 200-Transaction.
01 200-Rec Pic X(53).

Fd 300-Log.
01 300-Rec Pic X(60).

Working-Storage Section.
01 400-Work-Fields.
 05 400-Action Pic X Value " ".
 88 No-More Value "x".
 05 400-There-Flag Pic X Value " ".
 88 Record-There Value "Y".
 88 Record-Not-There Value "N".
 05 400-FileName Pic X(80) Value " ".
 05 400-Record-Counts.
 10 400-Add-Count Pic 9(6) Value 0.
 10 400-Chg-Count Pic 9(6) Value 0.
 10 400-Del-Count Pic 9(6) Value 0.

01 500-Work-Rec.
 05 500-Emp-ID Pic 9(5).

c© 2006 EDSIG http://isedj.org/4/28/ July 7, 2006

ISEDJ 4 (28) Haney 9

 05 500-TC Pic X.
 05 500-First-Name Pic X(12).
 05 500-Last-Name Pic X(15).
 05 500-Department Pic X(12).
 05 500-Hours Pic 99V99.
 05 500-Hours-X Redefines 500- Hours
 Pic X(4).
 05 500-Rate Pic 99V99.
 05 500-Rate-X Redefines 500-Rate
 Pic X(4).
 01 600-Work-Rec.
 05 600-Emp-ID Pic 9(5).
 05 600-First-Name Pic X(12).
 05 600-Last-Name Pic X(15).
 05 600-Department Pic X(12).
 05 600-Hours Pic 99V99.
 05 600-Rate Pic 99V99.

Linkage Section.
01 lnk-FileName Pic X(80).
01 lnk-addCount Pic 9(6).
01 lnk-chgCount Pic 9(6).
01 lnk-delCount Pic 9(6).
01 lnk-txtMessage Pic X(50).

Procedure Division using lnk-FileName
 lnk-addCount
 lnk-chgCount
 lnk-delCount
 lnk-txtMessage.

A100-Main.
 Perform B100-Initial.
 Perform B200-Process Until No-More.
 Perform B300-End.
 Exit Program.

B100-Initial.
 Move lnk-FileName to 400-FileName.
 Open I-O 100-Payroll.
 Open Input 200-Transaction.
 Open Output 300-Log.
 Perform C200-Get-Transaction-Record.

B200-Process.
 Perform C100-Get-Payroll-Record.
 Perform C300-Update.
 Perform C200-Get-Transaction-Record.

B300-End.
 Close 100-Payroll.
 Close 200-Transaction.
 Move "Program Ended!" to 300-Rec.
 Write 300-Rec.
 Close 300-Log.
 Move 400-Add-Count to lnk-addCount.
 Move 400-Chg-Count to lnk-chgCount.
 Move 400-Del-Count to lnk-delCount.
 Move "Update completed successfully!" to
 lnk-txtMessage.

 C100-Get-Payroll-Record.
 Move 500-Emp-ID to 100-Emp-ID.
 Move "Y" to 400-There-Flag.
 Read 100-Payroll Into 600-Work-Rec
 Invalid Key Move "N" to

400-There-Flag
 End-Read.

c© 2006 EDSIG http://isedj.org/4/28/ July 7, 2006

ISEDJ 4 (28) Haney 10

C200-Get-Transaction-Record.
 Read 200-Transaction Into 500-Work-Rec
 At End Move "x" to 400-Action
 End-Read.

C300-Update.
 If 500-TC is equal to "a"
 If 400-There-Flag is equal to "Y"
 Move space to 300-Rec
 String 500-Emp-ID " Already on file"
 into 300-Rec
 Write 300-Rec
 Else
 Perform D100-Add
 Exit Paragraph
 End-IF.
 If 500-TC is equal to "c"
 If 400-There-Flag is equal to "N"
 Move space to 300-Rec
 String 500-Emp-ID " Not on file"
 into 300-Rec
 Write 300-Rec
 Else
 Perform D200-Change
 Exit Paragraph
 End-IF.
 If 500-TC is equal to "d"
 If 400-There-Flag is equal to "N"
 Move space to 300-Rec
 String 500-Emp-ID " Not on file"
 into 300-Rec
 Write 300-Rec
 Else
 Perform D300-Delete
 Exit Paragraph
 End-IF.

D100-Add.
 Move 500-Emp-ID to

600-Emp-ID 100-Emp-ID.
 Move 500-First-Name to

600-First-Name.
 Move 500-Last-Name to

600-Last-Name.

 Move 500-Department to
 600-Department.
 Move 500-Hours to 600-Hours.
 Move 500-Rate to 600-Rate.
 Move " " to 400-Action.
 Write 100-Rec from 600-Work-Rec
 Invalid Key
 Move "e" to 400-Action
 Move "Error on Add" to 300-Rec
 Write 300-Rec
 End-Write.
 If 400-Action not = "e"
 Move space to 300-Rec
 String 500-Emp-ID " Record Added"
 into 300-Rec
 Write 300-Rec
 Add 1 to 400-Add-Count
 End-If.

D200-Change.
 If 500-First-Name

 is not equal to space
 Move 500-First-Name to

c© 2006 EDSIG http://isedj.org/4/28/ July 7, 2006

ISEDJ 4 (28) Haney 11

 600-First-Name
 End-If.
 If 500-Last-Name is not equal to space
 Move 500-Last-Name to

 600-Last-Name
 End-If.
 If 500-Department

 is not equal to space
 Move 500-Department to

 600-Department
 End-If.
 If 500-Hours-X is not equal to space
 Move 500-Hours to 600-Hours
 End-If.
 If 500-Rate-X is not equal to space
 Move 500-Rate to 600-Rate
 End-If.
 Move " " to 400-Action.
 Rewrite 100-Rec from 600-Work-Rec
 Invalid Key
 Move "e" to 400-Action
 Move space to 300-Rec
 String 500-Emp-ID

" Error on Change"
 into 300-Rec
 Write 300-Rec
 End-Rewrite.
 If 400-Action is not equal to "e"
 Move space to 300-Rec
 String 500-Emp-ID

 " Record Changed"
 into 300-Rec
 Write 300-Rec
 Add 1 to 400-Chg-Count
 End-If.

D300-Delete.
 Move 500-Emp-ID to 100-Emp-ID.
 Move " " to 400-Action.
 Delete 100-Payroll
 Invalid Key
 Move "e" to 400-Action
 String 500-Emp-ID

 " Error on Delete"
 into 300-Rec
 Write 300-Rec
 End-Delete.
 If 400-Action is not equal to "e"
 String 500-Emp-ID

 " Record Deleted"
 into 300-Rec
 Write 300-Rec
 Add 1 to 400-Del-Count
 End-If.

c© 2006 EDSIG http://isedj.org/4/28/ July 7, 2006

ISEDJ 4 (28) Haney 12

Appendix B: Proxy (Wrapper) Program

The Proxy or Wrapper program is the link between the Client (C#) program and the legacy

(COBOL) program. The Proxy program also interacts with the Data Object class. The Proxy

program creates an instance of the Data Object in the Repository which is referenced in the

Linkage Section. The Repository provides the means of relating internal names with external

references. See section 2.2 above for additional descriptive information.

* Proxy class for batch payroll update.

* cblProxy - This program provides the
* functionality to send a file name to the
* batch update program (cblUpdate) and
* return counts for the number of records
* added, changed, and deleted, and a
* message after the program is run.

 CLASS-ID. cblProxy As "cblProxy".
 REPOSITORY.
 CLASS StringClass As "System.String"
 CLASS dataObject As "dataObject" .
 STATIC.
 DATA DIVISION.
 PROCEDURE DIVISION.
 METHOD-ID. CallUpdateProgram As

 "CallUpdateProgram".
 Local-Storage Section.
 01 lo-DataIn.
 05 lo-FileName Pic X(80).
 01 lo-DataOut.
 05 lo-Message Pic X(50).
 05 lo-Added Pic 9(6).
 05 lo-Changed Pic 9(6).
 05 lo-Deleted Pic 9(6).

 LINKAGE SECTION.
 01 lnk-FileName Object Reference StringClass.
 01 lnk-dataObj Object Reference dataObject.

 PROCEDURE DIVISION Using by value

lnk-FileName
 Returning lnk-dataObj.
 SET lo-FileName to lnk-FileName.
 CALL "cblUpdate" USING lo-FileName
 lo-Added
 lo-Changed
 lo-Deleted
 lo-Message .

 Invoke dataObject "New" Returning

 lnk-DataObj.
 Set lnk-dataObj::"ReturnMessage" to

 lo-Message.
 Set lnk-dataObj::"ReturnAdded" to

 lo-Added.
 Set lnk-dataObj::"ReturnChanged" to

 lo-Changed.
 Set lnk-dataObj::"ReturnDeleted" to

 lo-Deleted.

 END METHOD CallUpdateProgram.
 END STATIC.
 END CLASS cblProxy.

c© 2006 EDSIG http://isedj.org/4/28/ July 7, 2006

ISEDJ 4 (28) Haney 13

Appendix C: Data Object Class

The Data Object class serves only one purpose, to store data that is transferred from the

Proxy program back to the Client program. The data consists of a message and three counts

for the number of records added, changed, or deleted in the payroll master file. The message

indicates that the update completed successfully. The property identifies the class data mem-

ber that is referenced in the Client program. A property is a name that is used to qualify an

object reference so a value can be passed into or out of the object. This allows the transfer-

ence of data that is defined in a COBOL program as Picture X or Picture 9 easily into a C# pro-

gram. See section 2.3 above for context.

* Data Object Class.

* cblData - This class defines the data object
* which is used to pass data from the wrapper * to the client.

 Identification Division.
 Class-id. dataObject As "dataObject".
 Environment Division.
 Configuration Section.
 Repository.
 Class DecimalClass as "System.Decimal"
 Class StringClass as "System.String" .
 Object.
 Data Division.
 Working-Storage Section.
 01 ReturnMessage
 Object Reference StringClass
 Property as "ReturnMessage".
 01 ReturnAdded
 Object Reference DecimalClass
 Property as "ReturnAdded".
 01 ReturnChanged
 Object Reference DecimalClass
 Property as "ReturnChanged".
 01 ReturnDeleted
 Object Reference DecimalClass
 Property as "ReturnDeleted".
 End Object.
 END CLASS dataObject.

c© 2006 EDSIG http://isedj.org/4/28/ July 7, 2006

ISEDJ 4 (28) Haney 14

Appendix D: Client Program

The Client program is written in C#, although it could just as easily have been written in Visual

Basic. A class string data member is defined to hold the path and filename of the transaction

data file which is populated using a common dialog box.

In the update method an instance of the Data Object is created. Then the COBOL Proxy pro-

gram is called by sending the transaction file name and returning the update counts and mes-

sage into an instance of the Data Object. The Class-ID is named cblProxy and the Method-ID

is named CallUpdateProgram. Finally, the message and update counts are assigned to the

appropriate textboxes from the data members of the Data Object. The counts, being numeric,

must be converted to string. Only the relevant code of the C# program is shown below. See

section 2.4 above for context.

/*

 A C# program that provides a Graphical User Interface (GUI) to the legacy pro-
gram. This program uses a common dialog box to get the path and file name of
the transaction file.

The path and file name are passed to the Proxy class.
The Proxy class returns counts for records added, changed, and deleted, and a
message.

 */
public class csMain : System.Windows.Forms.Form
{
private string strFileName = "";
. . . .

private void btnUpdate_Click(object sender, System.EventArgs e)
{
 dataObject dtaObj = new dataObject();
 dtaObj = cblProxy.CallUpdateProgram(strFileName);
 txtMessage.Text = dtaObj.ReturnMessage;
 txtAdded.Text = Convert.ToString(dtaObj.ReturnAdded);
 txtChanged.Text = Convert.ToString(dtaObj.ReturnChanged);
 txtDeleted.Text = Convert.ToString(dtaObj.ReturnDeleted);
}

c© 2006 EDSIG http://isedj.org/4/28/ July 7, 2006

