
Volume 4, Number 71 http://isedj.org/4/71/ September 7, 2006

In this issue:

A Study of Software Methodology Analysis:“Great Taste or Less Filling”

Jeffrey L. Brewer Kevin C. Dittman
Purdue University Purdue University

West Lafayette, IN 47907-1421 USA West Lafayette, IN 47907-1421 USA

Gaurav Ghatge
Purdue University

West Lafayette, IN 47907-1421 USA

Abstract: Software project management methodologies that have developed in the past couple of
decades have done so to address the endemic problem of software project failures caused, in a large
part, by lack of planning and poor execution. Methodologies like Waterfall, Sashimi, Spiral and Agile
have all become key tools in a project manager’s tool box. With so many methodologies littering
the software development domain, it begs the question as to which development methodology is the
right one for a particular project. How does a project manager know which methodology available
today is the right one to produce satisfactory results? In this paper we address these questions and
also how to aid students in their understanding of these choices.

Keywords: project management, methodology, scrum, rational unified process, rup

Recommended Citation: Brewer, Dittman, and Ghatge (2006). A Study of Software
Methodology Analysis:“Great Taste or Less Filling” Information Systems Education Journal, 4
(71). http://isedj.org/4/71/. ISSN: 1545-679X. (Also appears in The Proceedings of ISECON
2005: §2153. ISSN: 1542-7382.)

This issue is on the Internet at http://isedj.org/4/71/

ISEDJ 4 (71) Information Systems Education Journal 2

The Information Systems Education Journal (ISEDJ) is a peer-reviewed academic journal
published by the Education Special Interest Group (EDSIG) of the Association of Information
Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1545-679X. • First issue: 8 Sep 2003.
• Title: Information Systems Education Journal. Variants: IS Education Journal; ISEDJ. • Phys-
ical format: online. • Publishing frequency: irregular; as each article is approved, it is published
immediately and constitutes a complete separate issue of the current volume. • Single issue price:
free. • Subscription address: subscribe@isedj.org. • Subscription price: free. • Electronic access:
http://isedj.org/ • Contact person: Don Colton (editor@isedj.org)

2006 AITP Education Special Interest Group Board of Directors

Stuart A. Varden
Pace University

EDSIG President 2004

Paul M. Leidig
Grand Valley State University
EDSIG President 2005-2006

Don Colton
Brigham Young Univ Hawaii

Vice President 2005-2006

Wendy Ceccucci
Quinnipiac Univ
Director 2006-07

Ronald I. Frank
Pace University

Secretary 2005-06

Kenneth A. Grant
Ryerson University
Director 2005-06

Albert L. Harris
Appalachian St

JISE Editor

Thomas N. Janicki
Univ NC Wilmington

Director 2006-07

Jens O. Liegle
Georgia State Univ
Member Svcs 2006

Patricia Sendall
Merrimack College

Director 2006

Marcos Sivitanides
Texas St San Marcos
Chair ISECON 2006

Robert B. Sweeney
U South Alabama
Treasurer 2004-06

Gary Ury
NW Missouri St
Director 2006-07

Information Systems Education Journal 2005-2006 Editorial and Review Board

Don Colton
Brigham Young Univ Hawaii

Editor

Thomas N. Janicki
Univ of North Carolina Wilmington

Associate Editor

Samuel Abraham
Siena Heights U

Tonda Bone
Tarleton State U

Alan T. Burns
DePaul University

Lucia Dettori
DePaul University

Kenneth A. Grant
Ryerson Univ

Robert Grenier
Saint Ambrose Univ

Owen P. Hall, Jr
Pepperdine Univ

Jason B. Huett
Univ W Georgia

James Lawler
Pace University

Terri L. Lenox
Westminster Coll

Jens O. Liegle
Georgia State U

Denise R. McGinnis
Mesa State College

Therese D. O’Neil
Indiana Univ PA

Alan R. Peslak
Penn State Univ

Jack P. Russell
Northwestern St U

Jason H. Sharp
Tarleton State U

Charles Woratschek
Robert Morris Univ

EDSIG activities include the publication of ISEDJ, the organization and execution of the annual
ISECON conference held each fall, the publication of the Journal of Information Systems Education
(JISE), and the designation and honoring of an IS Educator of the Year. • The Foundation for
Information Technology Education has been the key sponsor of ISECON over the years. • The
Association for Information Technology Professionals (AITP) provides the corporate umbrella under
which EDSIG operates.

c© Copyright 2006 EDSIG. In the spirit of academic freedom, permission is granted to make and
distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document
is presented, and it is not modified in any substantial way.

c© 2006 EDSIG http://isedj.org/4/71/ September 7, 2006

ISEDJ 4 (71) Brewer, Dittman, and Ghatge 3

A Study of Software Methodology Analysis:
“Great Taste or Less Filling”

Jeffrey L. Brewer
jbrewer@purdue.edu

Kevin Dittman

kcdittman@purdue.edu

Gaurav Ghatge
gghatge@purdue.edu

Department of Computer and Information Technology

Purdue University, West Lafayette, Indiana 47907-1421 USA

Abstract

Software project management methodologies that have developed in the past couple of dec-
ades have done so to address the endemic problem of software project failures caused, in a
large part, by lack of planning and poor execution. Methodologies like Waterfall, Sashimi, Spi-
ral and Agile have all become key tools in a project manager’s tool box. With so many meth-
odologies littering the software development domain, it begs the question as to which devel-
opment methodology is the right one for a particular project. How does a project manager

know which methodology available today is the right one to produce satisfactory results? In
this paper we address these questions and also how to aid students in their understanding of
these choices.

Keywords: project management, methodology, scrum, rational unified process

1. INTRODUCTION

System development methodologies like Wa-

terfall, Sashimi, Spiral, and Agile have all
become key tools for project managers and
software developers to aid them in delivering
projects on time, within budget, and meet-
ing customer requirements. Unfortunately,
many have not used these methodologies

affectively nor have they chosen the right
methodology to fit the project. The Standish
Group, a West Yarmouth, Mass. consulting
company, which published their findings in
a report entitled “Chaos” for the first time in
1994 and which annually submits new find-
ings is a leader in assessing risk, return on

investment, and cost for Information Tech-
nology (IT) investments. At present count
they have conducted analyses of nearly
30,000 case studies.
(http://www.standishgroup.com). In Janu-

ary 2004, the Standish Group released the
latest statistics: 15 percent failure rate and

51 percent of projects meet the challenged
criteria as stated previously (Software-
Mag.com, 2004). In fact they are not the
only group to put out such compelling fig-
ures. According to a recent article written by
Scott Berinato for CIO.com, nearly three

quarters of all IT projects in the Internet era
that were conceived in the last seven years
have suffered from one or more of the fol-
lowing: total failure, cost overruns, time
overruns, or a rollout with fewer features or
functions than promised (Berinato, 2001). A
study conducted by the Forrester research

group states that nearly one-third of all IT
projects commenced would be an average of
three months late (Hoffman, 2003). The use
of standard methodologies has somewhat
helped in making sure that the projects un-
dertaken have met with some degree of suc-

c© 2006 EDSIG http://isedj.org/4/71/ September 7, 2006

ISEDJ 4 (71) Brewer, Dittman, and Ghatge 4

cess. According to pmi.org it has become the
norm nowadays for software project man-
agement to follow some sort of methodol-
ogy. Examples can be found in the vast re-

pository of the Project Management Institute
at http://www.pmi.org/prod/groups
/public/documents/info/pir_pmnetour.pdf.

Until recently, the methodologies that domi-
nated the field were methodologies that
were derived from well known engineering
fields. These methods approached system

development in a requirements/design/build
paradigm with standard, well-defined proc-
esses. Today they are called various names
like heavy methodologies or plan-driven
methodologies. However, newer methodolo-
gies have started making an appearance in

software projects. These methodologies
unlike the more classical ones are consid-
ered to be more agile and more able to
adapt to change. They do not focus on a
long development cycle but rather on short
iterations, lightweight processes and rely
heavily on tacit knowledge of the users

(Boehm & Turner, 2003). These types of
methodologies have come to be known as
light or agile methodologies. With so many
methodologies littering the software devel-
opment domain, it begs the question as to
which development methodology is the right
one for a particular project. How does a pro-

ject manager know which methodology
available today is the right one to produce
satisfactory results? Which one do we teach
our undergraduate students to use?

“America spends over $275 billion each year
on about 200,000 software development

projects, many of which fail” (Crawford,
2001). According to the Standish group, the
number of project failures had decreased
from about 40 percent in 1996 to about 23
percent in 2001 (Berinato, S., 2001). This
has been due to a sustained effort by project
managers to use standardized project man-

agement methodologies to ensure project
success. With the increase in use of heavy
and light methodologies to ensure project
completion success, project managers are
facing questions as to which methodology is
the right one that best fits their unique pro-
ject. The purpose of this study is to formu-

late a decision tree based on a set number
of project characteristics that will help guide
project managers in making a selection be-
tween two of today’s more popular method-
ologies; one being a heavy methodology

while the other being a light methodology.
This same criteria is used in our under-
graduate courses to help students learn the
differences and which methodology to use.

There are an abundance of methodologies
available for project managers to chose
from, which creates a need to help zero in
on the right methodology for their projects.
Many project management methodologies
are promising to help project managers de-
liver a project in time and under budget. But

we frequently hear stories of millions of dol-
lars spent on projects wasted because the
wrong methodology was used (Brichter,
1999; Boehm, 2003). These examples indi-
cate that a tool that helps project managers
determine the best methodology is of para-

mount importance. This study analyzed ma-
jor project characteristics like scope, people,
size etc. and indicates which type of meth-
odology (light versus heavy) was suitable
based on each characteristic. This study also
analyzed one popular light methodology like
Scrum and one heavy methodology like the

Rational Unified Process and determined
based on the characteristics of the project
which type of specific light or heavy meth-
odology is the best fit for the particular pro-
ject in question.

2. PROJECT CHARACTERISTICS

ANALYSIS

IT projects exhibit multiple characteristics.
For the duration of this study the authors
looked at nine critical success factors or
characteristics. Each characteristic is dealt
with differently depending on the methodol-
ogy that is being used. These nine charac-

teristics were determined from research ma-
terial available on project characteristics and
personal interviews. The interviews occurred
with 3 current project managers from two
different large pharmaceutical companies, a
consultant currently working as a project
manager for a large aerospace company and

a consultant working as a project manager
for several large healthcare providers. All of
the interviewees asked that their names not
be used. The top nine characteristics are:
size of the team, primary project goals, rate
of change present in the environment, plan-
ning and control, project communication,

handling of requirements, design and devel-
opment of systems, customer relations, and
the organization’s culture.

c© 2006 EDSIG http://isedj.org/4/71/ September 7, 2006

ISEDJ 4 (71) Brewer, Dittman, and Ghatge 5

Size of team: According to Kent Beck in his
book Extreme Programming Explained, “Size
clearly matters. You probably couldn’t run an
XP project with a hundred programmers. Not

fifty. Nor twenty. Ten is definitely doable”
(Beck, 1999). The agile process seems to
work best with small applications. Industry
wide consensus is that the tight coordination
and shared knowledge generally prevents
agile methods with teams over forty. (Con-
stantine, 2001). There are definite excep-

tions to the norm. But they are few and far
between. The highly successful 50-person
Singapore lending application, and another
successful 250-person, banking application
have proved the above consensus to be
wrong. However after interviewing the man-

agers of both projects they were in no doubt
that using an agile methodology was highly
risky in ensuring the success of the project.
Other examples have been to develop a cor-
porate portfolio of related applications in-
volving around 800 developers at IDX, a
medical information services company

(Highsmith, 2002). The methodology used
on that particular project was SCRUM. Such
a large project had to adapt to traditional
plans and specifications in order to deal with
the increasingly complex, multidimensional
interactions among the project’s elements
(Boehm & Turner, 2003). However, there

have been countless failures in using agile
methodologies where size has been over
forty.

Conversely, heavy methodologies do a much
better job at addressing projects which in-
volve large number of people and which are

high in complexity. Since heavy methodolo-
gies are highly process and document ori-
ented, they provide for better communica-
tion and coordination across large groups.
The down-side for such a rigid, document
driven methodology is that it requires more
time to get the project off the ground. Hence

such a methodology will not be very efficient
on small projects. Boehm and Turner cite
that their Software Steering Committee had
recently participated in a 150-person, week
long review of the completeness and consis-
tency of thousands of pages of specifications
for the U.S. Army/DARPA Future Combat

System program (Turner & Boehm, 2003).
The specifications dealt with 34 highly com-
plex systems and the specifications were
produced by multiple integrated product
teams. The authors, in their book Balancing

Agility and Discipline, categorically stated
that there was absolutely no way to handle
the problem with agile methodologies and
tacit knowledge propagation.

According to Alistair Cockburn, “A larger
group needs a larger (heavy) methodology”
(Cockburn, 2000). A methodologies primary
purpose is to coordinate people and commu-
nication flow between them. He states that
because a large methodology deals with
more roles, work products, reviews and so

on a project that will exhibit multiple roles
and multiple work products will have to be
dealt with using a heavy methodology.

Primary Project Goals: Depending on what
the primary project goals are the use of
methodologies will differ accordingly. The

primary goals of plan-driven methodologies
are predictability, stability and high assur-
ance. A heavy methodology like SW_CMM or
RUP focuses on process improvement. It
does so by increasing process capability
through standardization, measurement and
control. Prediction is based on the meas-

urements of prior standard activities while
control is asserted when current progress is
outside the expected tolerances (Boehm &
Turner, 2003).

For projects which are safety critical and
demand high assurance a heavy methodol-
ogy seems to be a better fit. Such projects

require a documented set of plans and
specifications and need to adhere to certain
government standards. Government stan-
dards like RTCA DO-178B require strict ad-
herence to process and specific types of
documentation to achieve safety or security.

For example, failure in an atomic power
plant is more serious than failure in bowling-
match tracking software. Accordingly, the
methodology the developers use in building
the power plant software needs to be more
document-driven stable and predictable.
Suppose both projects incorporate a re-

quirements gathering technique called “use
cases”. The bowling league might write them
in a few sentences on the board, on a scrap
of paper, or in a word processing document.
The power plant team will insist on writing
them using a particular tool and filling in
particular fields. They will call for version

control, reviews, and sign-offs at several
stages in the life cycle. The benefit is that
more writers and readers will be able to col-
laborate and fewer mistakes will be made,

c© 2006 EDSIG http://isedj.org/4/71/ September 7, 2006

ISEDJ 4 (71) Brewer, Dittman, and Ghatge 6

which is supposed to justify the extra cost.
Hence a more critical system- one whose
undetected defects will produce more dam-
ages – needs more publicly visible correction

in its construction (Cockburn, 2000). Proper
documentation, extensive communication
and more collaboration between the con-
cerned people needs to happen. This can be
done with a heavy methodology rather than
a light methodology.

If the primary goals of the project are to

address change rapidly and be proactive to
change then light methodologies seem to be
better able to adapt than bureaucratic and
rigid plan driven methodologies. Light meth-
odologies do not rely overtly on plan-driven
goals and heavy documentation, rather they

build things quickly and find out through
experience what activity or feature will add
the most value next (Boehm& Turner,
2003).

Rate of change present in the environ-

ment: Heavy methodologies work best when
the requirements are largely determinable in

advance and remain stable (Boehm &
Turner, 2003). Heavy methodologies can
handle concerns like enterprise, organiza-
tional, product line etc. across multiple pro-
jects. They do so because they cover a
broad spectrum of activities and to better
handling such a board spectrum of activities

they predict future needs through architec-
tures and extensible designs (Boehm &
Turner, 2003). Heavy methodologies de-
velop capabilities in related disciplines and
impact a large number of people at various
levels within the organizational hierarchy.

Light Methodologies “are most applicable to
turbulent, high-change environments,” and
have a world view that organizations are
complex adaptive systems, in which re-
quirements are emergent rather than pre-
specifiable (Cockburn & Highsmith, 2001).
Light methodologies generally focus their

scope on the matter at hand rather than on
problems that might be encountered in the
future. They are not necessarily concerned
with how the project integrates with an or-
ganization’s overall infrastructure or scale in
production (Silwa, 2002). In general light
methodologies are better used when pro-

jects are built in-house or in dedicated de-
velopment environments (cebase.org,
2002).

Planning and Control: Heavy methodolo-
gies are very plan-oriented. Hence in some
areas they are also called plan driven meth-
odologies. Planning forms an integral part of

such methodologies. These types of meth-
odologies rely heavily on documented proc-
ess plans (schedules, milestones, proce-
dures) and product plans (requirements,
architectures, and standards) to keep every-
thing coordinated (Boehm & Turner, 2003).
Heavy methodologies also draw heavily from

historical data and past performance in
planning for current projects. In fact, in such
methodologies progress is always tracked
against plans. Projects that are highly com-
plex and can span multiple activities will re-
quire exhaustive planning of all activities to

make coordination between people more
dependable.

In Light methodologies, planning is seen as
a means to an end rather than a means of
recording text. Most of the planning is done
in the form of deliberate group planning ef-
fort rather than being a part of the method-

ology. In other words planning is a very ad
hoc part of the methodology and a very in-
formal one. If some unforeseen occurrences
take place team members call upon each
others tacit understanding of the project
goals and try and implement a reworked
solution.

Project Communication: One of the ten-
ants of heavy methodologies is that they
rely primarily on explicit documented knowl-
edge. Communication in heavy methodolo-
gies is generally unidirectional i.e. from one
entity to another rather than two entities

(Boehm & Turner, 2003). Communication
procedures are very comprehensive and en-
sure that all foreseeable situations are com-
municated.

Light methodologies rely more on person-to-
person communication. They are not so con-
cerned with documenting communication

between entities. Light methodologies rather
rely on tacit, interpersonal knowledge and
such methodologies rely on communicating
through person-to-person interaction.

Handling of requirements: Plan-driven
methods generally prefer formal, base lined,
complete, consistent, traceable and testable

specifications. Heavy methodologies gener-
ally first identify requirements, define re-
quirements and then hand off the software
requirements to the appropriate team. Plan

c© 2006 EDSIG http://isedj.org/4/71/ September 7, 2006

ISEDJ 4 (71) Brewer, Dittman, and Ghatge 7

driven methods also focus more on dealing
with quality of nonfunctional requirements
such as reliability, throughput, real-time
deadline satisfaction, or scalability (Boehm &

Turner, 2003). Hence a project exhibiting a
high level of criticality is bound to follow a
plan driven methodology.

Light methodologies express requirements in
terms of changeable, informal stories. There
is a close interaction between customers and
developers to determine the highest-priority

set of requirements to be included in each
iteration. Light methodologies count on their
rapid iteration cycles to determine the
needed changes in the desired capability and
to fix them in the next iteration (Li & Al-
shayeb, 2001). Customers express their

strongest needs and the developers assess
what combinations of capabilities are feasi-
ble for inclusion in the next developmental
iteration. Negotiations establish the contents
of the next iteration (Boehm, 2000). Light
methodologies also handle prioritized and
evolutionary type requirements better than

plan driven methodologies (Beck, 1999).

Design and development of systems:
Plan driven methodologies use planning and
architecture- based design to accommodate
foreseeable change. This effort allows the
designers to organize the system to take
advantage of software reuse across product

lines (Boehm & Turner, 2003). By using plan
driven methodologies companies like Hew-
lett-Packard were able to reduce its software
development cycle time from 48 months to
12 months over 5 years, by developing plug
and play reusable software modules (Lim,

1998). Hence for a project which has to
have a robust architecture, plan driven
methodologies are a good fit as predictability
and dependability are primary objectives of
such methodologies.

Light methodologies advocate simplicity at
every turn. The simpler the design the better

is one of extreme programming’s goals
(Beck, 1999). Such methodologies look at
only catering to the minimum requirements
as set up by the users or customers. They
do not anticipate new features and in fact
expend effort to remove them. Light meth-
odologies assume that the cost of rework to

change software to support new, possibly
unanticipated, capabilities will remain low
over time (Boehm & Turner, 2003). They
also assume that the application situation

will change so rapidly that any code added
to support future capabilities will never be
used (Beck, 1999).

Customer Relations: Customer relations

are an area that is addressed differently by
different methodologies. Heavy methodolo-
gies generally depend on some form of con-
tracts between the developers and custom-
ers as the basis for customer relations. They
try to cope with foreseeable problems by
working through them in advance and for-

malizing the solutions in a documented
agreement. However, having contracts can
cause start-up delays since contracts can be
a drawn out process. Contracts need to be
extremely precise to encompass all the ex-
pectations. An incomplete or imprecise con-

tract can lead to unsatisfactory results due
to incomplete expectations. The net result is
that it may lead to project failure leading to
loss of trust and an adversarial relation be-
tween the system developer and the cus-
tomer. Heavy methodologies bank on their
process maturity to provide confidence in

their work (Boehm & Turner, 2003).

Light methodologies strongly depend on
dedicated, collocated, customer representa-
tives to keep the projects focused on adding
rapid value to the organization (Boehm &
Turner, 2003). However, care has to be
taken to ensure that these customer repre-

sentatives must act as liaisons and there is
total synch between the system users they
represent and the development team. If this
is not the case and if the representatives do
not completely understand the user needs or
are unable to reflect them to the systems

development team there can be total project
failure. Light methodologies use working
software and customer participation to instill
trust in their track record, the systems they
have developed and the expertise of their
people.

Organizational Culture: Organizational

Culture is an important criterion which can
relate directly to the success of the method-
ology that is being used. If the organiza-
tional culture dictates that clear policies and
procedures will define a person’s role then
heavy methodologies tend to best fit that
organization. Every person’s task is well-

defined and documented. The general rule is
that each developer, programmer, analyst
will accomplish the tasks given to him or her
to exact specifications so that their work

c© 2006 EDSIG http://isedj.org/4/71/ September 7, 2006

ISEDJ 4 (71) Brewer, Dittman, and Ghatge 8

products will easily integrate into others
work products with limited knowledge of
what others are actually doing (Boehm &
Turner, 2003).

When organizations are not so rigid and
where people have more freedom available
to them to define their work roles and poli-
cies are made as required then light meth-
odologies are a better fit. Each person is ex-
pected and trusted to do whatever work is
necessary to the success of the project.

There is no definite role or scope of work
that has to be completed by each person. It
is expected that unnoticed tasks are com-
pleted by the person who first notices them
and so forth.

3. PROJECT METHODOLOGY ANALYSIS

The two representative methodologies se-
lected for this study were Scrum and the
Rational unified Process. Each is explained in
this section.

Scrum was developed by Ken Schwaber and
Jeff Sutherland. Scrum is based on the con-
cept that software development is not a de-

fined process, but an empirical process with
complex input/output transformations that
may or may not be repeated under differing
circumstances (Boehm & Turner, 2003). One
of the biggest influences on Scrum is the
evolving scientific discipline known as com-
plexity theory. It is concerned with the be-

havior over time of certain kinds of complex
systems. The first reference to the term
Scrum in literature can be attributed to the
article of Takeuchi and Nonaka as early as
1986. In their article Takeuchi and Nonaka
talk about an adaptive, quick, self-

organizing, product development process
(Schwaber & Beedle, 2002). The name is
essentially derived from the game of rugby.
In rugby a play where two opposing teams
attempt to move against each other in large,
brute-force groups is called a Scrum. Each
group must be quick to counter the other’s

thrust and adjust and exploit any perceived
weakness without the luxury of planning
(Boehm & Turner, 2003).

The Scrum approach has been developed for
managing the systems development process.
It is an empirical approach applying the
ideas of industrial control process theory to

systems development resulting in an ap-
proach that reintroduces the idea of flexibil-

ity, adaptability and productivity (Schwaber
& Beedle, 2002). It does not specify or de-
fine any software technique in the develop-
ment phase. Scrum concentrates on how the

team members should function in order to
produce the system flexibility in a constantly
changing environment. Table 1 lists some of
the advantages and disadvantages of using
Scrum.

RUP is a Software Engineering Process
(Kruchten, 1999). RUP is the direct succes-

sor to the Rational Objectory Process. The
Rational Objectory Process was the result of
the integration of the “Rational Approach”
and the Objectory process (version 3), after
the merger of Rational Software Corporation
and Objectory AB in 1995 (Gornik, 2001).

From its Objectory ancestry, the process has
inherited its process structure and the cen-
tral concept of a use case. From its Rational
background, it gained the current formula-
tion of iterative development and architec-
ture (Gornik, 2001). Finally, RUP is a specific
and detailed instance of a more generic

process described by Ivar Jacobson, Grady
Booch, and James Rumbaugh in the text-
book, The Unified Software Development
Process.

RUP provides a disciplined approach to as-
signing tasks and responsibilities within a
development organization. Its goal is to en-

sure the production of high-quality software
that meets the needs of its end-users, within
a predictable schedule and budget. The Ra-
tional Unified Process enhances team pro-
ductivity, by providing every team member
with easy access to a knowledge base with

guidelines, templates and tool mentors for
all critical development activities (Jacobson
et al, 1992). By having all team members
accessing the same knowledge base, no
matter if you work with requirements, de-
sign, test, project management, or configu-
ration management, it ensures that all team

members share a common language, proc-
ess and view of how to develop software
(Brown, 1996). RUP activities create and
maintain models. Rather than focusing on
the production of a large amount of paper
documents, RUP emphasizes the develop-
ment and maintenance of models—

semantically rich representations of the
software system under development (Booch,
1995). Table 2 lists some of the advantages
and disadvantages to using RUP. The advan-
tages were taken from several resources

c© 2006 EDSIG http://isedj.org/4/71/ September 7, 2006

ISEDJ 4 (71) Brewer, Dittman, and Ghatge 9

Table 1. Why use Scrum

Table 2. Why use RUP

Advantages Disadvantages

Productivity increases

o Some Scrum teams have recorded a 4x
increase in productivity (Schwaber,
1997).

o Most improve productivity by 10-20%
depending on management commitment.
(Schwaber & Beedle, 2002).

Requires hands-on management, but not
micromanagement (Boehm & Turner,
2003).

o Management must be willing to make

changes to help Scrum teams succeed

o Scrum requires constant monitoring both
quantitatively and qualitatively

Continuous improvement

o Scrum enables continuous, rapid, bot-
tom-up reengineering (Schwaber &

Beedle, 2002).

Requires management to delegate decision-
making authority to the Scrum team
(Beedle et al, 2000).

Leverages the chaos (Schwaber, 1997)

o The product becomes a series of man-
ageable chunks

o Progress is made, even when require-

ments are not stable

o Everything is visible to everyone

o Team communication improves

o The team shares successes along the way
and at the end

o Customers see on-time delivery of incre-
ments

o Customers obtain frequent feedback on
how the product actually works

o A relationship with the customer devel-
ops, trust builds, and knowledge grows

Scrum is new and different

o People are resistant to change

o Some workers are not comfortable with
the responsibility Scrum enables

Advantages Disadvantages

Risks are mitigated earlier

Change is more manageable

Not easy to tailor to smaller projects
(Kruchten, 2001)

Higher level of reuse

Project team can learn along the way

Better overall quality

Leads to a tendency to “take it all”,
which leads to high implementation costs
(Kruchten, 1999).

Enhances team productivity, by providing every
team member with easy access to a knowledge
base with guidelines, templates and tool men-
tors for all critical development activities

Has a large volume of process guidelines
and is very detail heavy (Boehm &
Turner, 2003).

c© 2006 EDSIG http://isedj.org/4/71/ September 7, 2006

ISEDJ 4 (71) Brewer, Dittman, and Ghatge 10

(Boehm, 1996; Booch, 1995; Jocobson,
1999; Pollices, 2003).

4. DECISION TREE ANALYSIS

The decision tree diagrams that follow are

separate and distinct decision trees. They do
not constitute parts of one large decision
tree. Although that might be desirable, it
was determined that it was outside the
scope of this study. To come up with an
overall decision tree consisting of nine pro-
ject characteristics would be an enormous

undertaking. The ranking of the nine charac-
teristics would have to be done by each pro-
ject manager. It is very difficult to say which
characteristic is more important than the
other. It boils down to each project and what
is being achieved by that project and the

concerned project manager. It can only be
arrived at by conducting a survey of multiple
projects and determining individual weight-
ings for each characteristic.

4.1 Size of Team Characteristic

Figure 1 indicates that if size of the team is
more than ten then it is advisable to use a

heavy methodology like RUP. The primary
reason is that the larger the team is, the
more difficult it becomes to coordinate the
team and its members. Similarly light meth-
odologies are better at handling smaller
teams. Industry wide consensus is that the
tight coordination and shared knowledge

generally prevents agile methods with teams
over forty (Constantine, 2001).

Figure 1: Team Size
Characteristic Decision tree

4.2 Primary Project Goal Characteristic

Figure 2 indicates that if the primary goal of

a project is to deliver a predictable and sta-
ble system then it is better to use a heavy
methodology like RUP. Heavy methodologies
focus on process improvement. For projects

which are safety critical and demand high
assurance a heavy methodology seems to be
a better fit. If the primary goals of the pro-
ject are to address change rapidly and be

proactive to change then light methodologies
seem to be better able to adapt than bu-
reaucratic and rigid plan driven methodolo-
gies. Light methodologies do not rely overtly
on plan-driven goals and heavy documenta-
tion, rather they build things quickly and
find out through experience what activity or

feature will add the most value next (Boehm
& Turner, 2003).

Figure 2: Primary Project Goal
Characteristic Decision Tree

4.3 Rate of Change Characteristic

Figure 3 indicates that if requirements are
going to remain stable over time and re-
quirements can be determined in advance it

is better to use a Heavy Methodology like
RUP. Light methodologies are better suited
to an environment that is always changing
or can be described as turbulent. Light
methodologies focus their scope on the mat-
ter at hand rather than on problems that
might be encountered in the future.

Figure 3: Rate of Change
Characteristic Decision Tree

c© 2006 EDSIG http://isedj.org/4/71/ September 7, 2006

ISEDJ 4 (71) Brewer, Dittman, and Ghatge 11

4.4 Planning and Control Characteristic

Figure 4 illustrates that heavy methodologies
like RUP rely heavily on documented process
plans (schedules, milestones, procedures)

and product plans (requirements, architec-
tures, and standards) to keep everything
coordinated (Boehm & Turner, 2003). Pro-
jects that are highly complex and can span
multiple activities will require exhaustive
planning of all activities to make coordina-
tion between people more dependable. In

projects where progress needs to be tracked
against a baseline plan, methodologies like
RUP are ideally suited. For light methodolo-
gies planning is a very ad hoc process done
as and when needed.

Figure 4: Planning and Control
Characteristic Decision Tree

Figure 5: Project Communication
Characteristic Decision Tree

4.5 Project Communication

Characteristic

Figure 5 indicates when communication pro-
cedures need to be comprehensive and need
to be documented then the use of heavy

methodology makes sense. Light method-
ologies rely more on person to person com-
munication to pass on relevant information.
There is no concept of documenting commu-

nication procedures as methodologies like
SCRUM rely on tacit, interpersonal knowl-
edge.

4.6 Handling Requirements

Characteristic

Figure 6 indicates that when there is a need
for formal, complete, traceable requirements

it is a good idea to go with a heavy method-
ology like RUP. RUP identifies and defines
requirements and then hands off the soft-
ware requirements to the appropriate team.
RUP also focus more on dealing with quality
of nonfunctional requirements such as reli-

ability, throughput, real-time deadline satis-
faction, or scalability. Light methodologies
express requirements in terms of adjustable,
informal stories (Boehm & Turner, 2003).
Light methodologies count on their rapid
iteration cycles to determine the needed
changes in the desired capability and to fix

them in the next iteration (Li & Alshayeb,
2001). Customers express their strongest
needs and the developers assess what com-
binations of capabilities are feasible for in-
clusion in the next developmental iteration
(Boehm, 2000).

Figure 6: Handling Requirements
Characteristics Decision Tree

4.7 Design and Development

Characteristic

Figure 7 illustrates that when a project

needs to use planning to accommodate fore-
seeable change a heavy methodology like
RUP is a good idea. RUP allows system de-

c© 2006 EDSIG http://isedj.org/4/71/ September 7, 2006

ISEDJ 4 (71) Brewer, Dittman, and Ghatge 12

velopers to reuse software components
across multiple product lines. For a project
which has to have a robust architecture, RUP
is a good fit as predictability and dependabil-

ity are primary objectives of RUP. Light
methodologies advocate simplicity over
complexity. Methodologies like SCRUM look
at only catering to the minimum require-
ments as set up by the users or customers.

Figure 7: Design and Development
Characteristic Decision Tree

Figure 8: Customer Relations
Characteristic Decision Tree

4.8 Customer Relations Characteristic

Figure 8 illustrates that heavy methodologies
like Scrum generally depend on some form
of contracts between the developers and
customers as the basis for customer rela-
tions. They try to cope with foreseeable
problems by working through them in ad-

vance and formalizing the solutions in a
documented agreement. Light methodolo-
gies strongly depend on dedicated, collo-

cated, customer representatives to keep the
projects focused on adding rapid value to
the organization (Boehm & Turner, 2003).
Light methodologies like Scrum use working

software and customer participation to instill
trust in their track record, the systems they
have developed and the expertise of their
people.

4.9 Organizational Culture

Characteristic

Figure 9 illustrates that if an organizational

culture is very rigid and bureaucratic and
demands clear policies and procedures to
identify roles for developers and program-
mers then heavy methodologies like RUP will
work well. In RUP every person’s task is
well-defined and documented. If an organi-

zation is characterized by a culture which
allows developers a high degree of freedom
to define their work roles and policies then
light methodologies are a better fit. There is
no definite role or scope of work that has to
be completed by each person.

Figure 9: Organizational Culture
Characteristic Decision Tree

5. CONCLUSION

Since the emergence of the internet age
there has been a considerable change in the
approach of project managers with respect

to how they address project management
issues. Newer methodologies have been de-
veloped with the sole intention of being able
to adapt to an environment that is ever
changing. Unlike their predecessors which
followed the classical approach of require-

ments/design/build these light methodolo-
gies follow the mantra of simplicity. With the
advent of these methodologies project man-
agers have been faced with a conundrum as
to which type of methodologies would be the
ideal one to use. As the author has pointed
out earlier, there have been numerous ex-

c© 2006 EDSIG http://isedj.org/4/71/ September 7, 2006

ISEDJ 4 (71) Brewer, Dittman, and Ghatge 13

amples of projects failing due to the im-
proper methodology being used.

The study analyzed nine characteristics that
define a methodology decision and also

studied two popular methodologies (RUP and
Scrum), one heavy methodology and one
light methodology. Based on these findings,
how the light and heavy methodologies each
addressed the project characteristics were
analyzed. Based on the findings, distinct de-
cision trees for each characteristic were de-

veloped. The decision tree showed how the
project manager could choose a heavy or a
light methodology based on what they
wanted to achieve. In cases where the deci-
sion trees contradict each other, one point-
ing to a heavy methodology and one point-

ing to a light methodology, the nine charac-
teristics must be prioritized based on organ-
izational culture and project situation. For
example, the priority assigned to each char-
acteristic for an internet based company in a
highly competitive industry on a very impor-
tant project would be different for a well es-

tablished fortune 100 company.

The results are not meant to be a substitute
for sound project management but as guide-
lines for project managers and students. A
good project manager would look at these
results and with the help of other project
management tools and techniques would

arrive at an informed decision to help man-
age a successful project.

6. REFERENCES

Beck, K. (1999). Extreme Programming Ex-
plained. Boston: Addison-Wesley, pg
157.

Beedle, M & Devos, M, &Sharon, Y. &
Schwaber, K. (2000). SCRUM: An exten-
sion pattern language for hyper produc-
tive software development. Retrieved on
September 30th, 2004, from
http://jeffsutherland.com/scrum
/scrum_plop.pdf

Berinato, S. (2001). The Secret to Software
Success. Retrieved September 6th, 2004,
from http://www.cio.com/archive
/070101/secret.html

Boehm, B. (2000). Unifying Software Engi-
neering and Systems and Systems Engi-
neering. IEEE Computer, pg 114-116.

Boehm, B. (2003). Value-Based Software
Engineering. ACM SIGSOFT Software
Engineering Notes, Vol. 26-2

Boehm, B., & Turner, R. (2003). Balancing

Agility and Discipline: A guide to the
Perplexed. Boston: Addison-Wesley

Booch, G. (1995). Object Solutions. Addi-
son-Wesley.

Booch, G., & Jacobson, I. & Rumbaugh, J.
(1998). Unified Modeling Language.
White Paper. Retrieved on September

20th, 2004 from http://www3.software
.ibm.com/ibmdl/pub/software/rational/w
eb/whitepapers/2000/Tp180.PDF.

Brichter, R.N. (1999). The limits of Software,
MA: Addison-Wesley

Brown, A. (1996). Component Based Soft-

ware Engineering. IEEE Computer Soci-
ety. Pg 140

Cebase.org, (2002). Results from the 3rd e-
Workshop on agile development process.
Retrieved on 30 September, 2004, from
http://fc-md.umd.edu/projects/Agile
/3rd-eWorkshop

/summary3rdeWorksh.htm

Cockburn, A. (2000). Selecting a Project’s
Methodology. Retrieved September 24th.
2004 from http://www.eee.metu.edu.tr/
~bilgen/Cockburn647.pdf

Cockburn,A.. & Highsmith, J. (2001). Agile
Software Development: The People Fac-

tor. Computer, pg.131-133. Retrieved
September 25th, 2004 from
http://www.jimhighsmith.com/articles/I
EEEArticle2Final.pdf

Constantine, L. (2001). Methodological Agil-
ity: Software Development. Pg 67-69

Crawford, K. (2001). The strategic project
office: Business case and implementa-
tion strategy. Pennsylvania: PMI Solu-
tions.

Gornik, D (2001). IBM Rational Unified Proc-
ess. Best Practice for Software Develop-
ment Teams. Retrieved on September

30th, 2004 from
http://www3.software.ibm.com/ibmdl/p
ub/software/rational/web/whitepapers/2
003/rup_bestpractices.pdf

c© 2006 EDSIG http://isedj.org/4/71/ September 7, 2006

ISEDJ 4 (71) Brewer, Dittman, and Ghatge 14

Highsmith, J. (2002). Agile Software Devel-
opment Ecosystems. Boston, Addison
Wessley.

Hoffman,T. (2003, July 21). Value of Project

Management Offices questioned. Com-
puterworld. Vol. 37, Iss. 29, pg. 7

Jacobson, I., Christerson, M., & Jonnson, P.,
& Overgaard, G. (1992). Object Oriented
Software Engineering -A Use Case
Driven Approach. Addison-Wesley, pg
582.

Jacobson I., & Booch, G., & Rumbaugh, J.
(1999). Unified Software Development
Process. Addison-Wesley.

Kruchten, P. (1999). Rational Unified Process
–An Intorduction. Addison-Wesley.

Li, W. & Alshayeb M., (2001). An Empirical

Study of Extreme Programming Process.
Proceedings , 17th Intl.
COCOMO/Software Cost Modeling Fo-
rum. USC-CSE. Retrieved September
20th, 2004, from http://sunset.usc.edu
/publications/TECHRPTS/2002

Lim, W. (1998). Managing Software Reuse.

Englewood Cliffs, NJ, Prentice-Hall

Pollice, G. (2003). Using the Rational Unified
Process for Small Teams: Expanding
upon extreme programming. Retreived
on September 30th, 2004 from
http://www3.software.ibm.com/ibmdl/p
ub/software/rational/web/whitepapers/2

003/tp183.pdf

Schwaber, K. (1995). Controlled Chaos. Liv-
ing on the Edge. American Programmer.

Schwaber, K. (1997). Scrum Development
Process. Retrrieved September3rd, 2004
from http://jeffsutherland.com/oopsla

schwapub.pdf

Schwaber, K., & Beedle M. (2002). Agile
Software Development with Scrum. Up-
per Saddle, NJ, Prentice Hall.

Silwa, C. (2002). Users Warm Up to Agile
Programming, Computerworld. Retrieved
September 22nd from http://www

.computerworld.com/softwaretopics
/software/appdev/story
/0,10801,69182,00.html

SoftwareMag.com (2004). Project success
rates improved over 10 years. Retrieved
September 6, 2004, from http://
www.softwaremag.com/L.cfm?Doc=

newsletter/2004-01-15/Standish

c© 2006 EDSIG http://isedj.org/4/71/ September 7, 2006

