Abstract: Likert scale measures are commonly used in assessing student performance as well as student perceptions. They are particularly good in gathering data to subjective questions, but being able to compare and contrast multiple Likert data has been a challenge for the typical academic. Researchers and educators alike frequently assign a numerical value to each Likert category, and then take a weighted average to get some general overall value that can be used for comparative purposes. Such efforts are fraught with error, since Likert scales are ordinal measures. A new measure is presented here and discussed, and an example of its use is provided. The new measure is called the Consensus Measure; when used in conjunction with a weighted mean it is easy to intuitively grasp the dispersion of values around any mean. Ranking sets of Likert scale data is easily accomplished and philosophically established.

Keywords: consensus measure, dispersion, weighted mean, weighted standard deviation
The Information Systems Education Journal (ISEDJ) is a peer-reviewed academic journal published by the Education Special Interest Group (EDSIG) of the Association of Information Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1545-679X. • First issue: 8 Sep 2003. • Title: Information Systems Education Journal. Variants: IS Education Journal; ISEDJ. • Physical format: online. • Publishing frequency: irregular; as each article is approved, it is published immediately and constitutes a complete separate issue of the current volume. • Single issue price: free. • Subscription address: subscribe@isedj.org. • Subscription price: free. • Electronic access: http://isedj.org/ • Contact person: Don Colton (editor@isedj.org)

2008 AITP Education Special Interest Group Board of Directors

Paul M. Leidig
Grand Valley State University
EDSIG President 2005-2006

Don Colton
Brigham Young Univ Hawaii
EDSIG President 2007-2008

Robert B. Sweeney
U South Alabama
Vice President 2007-2008

Wendy Ceccucci
Quinnipiac Univ
Member Svcs 2007-2008

Ronald I. Frank
 Pace University
Director 2007-2008

Kenneth A. Grant
 Ryerson University
Treasurer 2007-2008

Albert L. Harris
Appalachian St
JISE Editor 2006-2009

Thomas N. Janicki
Univ NC Wilmington
Chair ISECON 2008

Kevin Jetton
Texas St U San Marcos
Director 2007-2008

Kathleen M. Kelm
Edgewood College
Director 2007-2008

Alan R. Peslak
Penn State
Director 2007-2008

Steve Reames
Angelo State Univ
Director 2008-2009

Patricia Sendall
Merrimack College
Secretary 2007-2008

Information Systems Education Journal Editors

Don Colton
Brigham Young University Hawaii
Editor

Thomas N. Janicki
Univ of North Carolina Wilmington
Associate Editor

Samuel Abraham
Siena Heights U

Tonda Bone
Tarleton State U

Alan T. Burns
DePaul University

Lucia Dettori
DePaul University

Kenneth A. Grant
Ryerson Univ

Robert Grenier
Saint Ambrose Univ

Owen P. Hall, Jr
Pepperdine Univ

Jason B. Huett
Univ W Georgia

James Lawler
Pace University

Terri L. Lenox
Westminster Coll

Jens O. Liegle
Georgia State U

Denise R. McGinnis
Mesa State College

Therese D. O’Neil
Indiana Univ PA

Alan R. Peslak
Penn State Univ

Jack P. Russell
Northwestern St U

Jason H. Sharp
Tarleton State U

Charles Woratschek
Robert Morris Univ

EDSIG activities include the publication of ISEDJ, the organization and execution of the annual ISECON conference held each fall, the publication of the Journal of Information Systems Education (JISE), and the designation and honoring of an IS Educator of the Year. • The Foundation for Information Technology Education has been the key sponsor of ISECON over the years. • The Association for Information Technology Professionals (AITP) provides the corporate umbrella under which EDSIG operates.

© Copyright 2008 EDSIG. In the spirit of academic freedom, permission is granted to make and distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document is presented, and it is not modified in any substantial way.
A New Measure to Analyze Student Performance Using the Likert Scale

William J. Tastle
tastle@ithaca.edu
Dept of Business Administration
Ithaca College
Ithaca, New York 14850, USA

Jack Russell
jrussell@nsula.edu
College of Business
Northwestern State University
Natchitoches, Louisiana 71497, USA

Mark J. Wierman
mwierman@creighton.edu
Dept of Computer Science
Creighton University
Omaha, Nebraska 68178-2090, USA

ABSTRACT

Likert scale measures are commonly used in assessing student performance as well as student perceptions. They are particularly good in gathering data to subjective questions, but being able to compare and contrast multiple Likert data has been a challenge for the typical academic. Researchers and educators alike frequently assign a numerical value to each Likert category, and then take a weighted average to get some general overall value that can be used for comparative purposes. Such efforts are fraught with error, since Likert scales are ordinal measures. A new measure is presented here and discussed, and an example of its use is provided. The new measure is called the Consensus Measure; when used in conjunction with a weighted mean it is easy to intuitively grasp the dispersion of values around any mean. Ranking sets of Likert scale data is easily accomplished and philosophically established.

Keywords: consensus measure, dispersion, weighted mean, weighted standard deviation

1. INTRODUCTION

As educators, we spend a considerable amount of time involved in the assessment of our students, frequently by using a Likert scale. Sometimes we assess a student singularly, but usually we perform the assessment on teams. To clearly determine how a team progresses over time, i.e., if the team is working together and getting the job done, or has begun to flounder and is in need of some assistance, instructors commonly use the Likert scale to determine the level of need. The purpose of this paper is to describe a new measure that permits the assessment and ranking of ordinal scale (Likert) measures. The work is new, so the presentation is more theoretical than practical, though we illustrate the effectiveness of
the method with an example from the classroom.

The paper addresses the types of measurement scales and describes the mathematics behind this new measure. An example of an application of the measure to the analysis of student data is provided as an illustration of the power of the measure. Further, we describe how this measure also serves as an intuitive measure of dispersion, something that is difficult, at best, to do with the current dispersion measures of variance and standard deviation.

The new measure is called the consensus measure; its properties have been described and proven elsewhere (Wierman and Tastle, 2005; Tastle and Wierman, 2005). It also has an inverse measure called dissension.

2. THE MATHEMATICS OF THE NEW MEASURE

The measure is based on the fundamental theory of information as developed by Claude Shannon (1948) and recognized in the form of the Shannon entropy:

\[H(X) = - \sum_{i=1}^{n} p(x_i) \log_2 p(x_i) \]

This measure is fundamental to the study of information theory and has played a strong role in fuzzy mathematics (Klir and Wierman, 1997, 1998).

The equation of the consensus measure is defined as:

\[\text{Cns}(X) = 1 + \sum_{i=1}^{n} p_i \log_2 \left(1 - \frac{|X_i - \mu_X|}{d_X} \right) \]

where \(X \) is represented as the Likert scale, \(p_i \) is the probability of the frequency associated with each \(X \), \(d_X \) is the width of \(X \), \(X_i \) is the particular Likert attribute, and \(\mu_X \) is the mean of \(X \). The proof is found in Wierman and Tastle (2005).

Measures of Scales

Collections of categories used to accumulate data that are without any sense of order are called nominal scales. An example of a nominal scale is a listing of continents, i.e., 1 = Africa, 2 = Antarctica, 3 = Asia, 4 = Australia, 5 = Europe, 6 = North America, and 7 = South America. It is not logical to say that any meaningful ranking order is possible among these categories, and an increasing or decreasing alphabetical order is not a ranking order. Hence, any attempt to make meaningful comparisons is inappropriate.

Ordinal scales are merely ordered categories, but the ordering makes comparisons implicitly possible. Testing the temperature of a cup of tea would permit someone to use the words cold, tepid, lukewarm, warm, moderately hot, hot, and very hot as their scale of comparative measure. There is no sense of interval scale in this measure and hence, equations such as cold + lukewarm = moderately hot, or the average of hot and very hot is hot and a half, is both impractical and illogical. Likert scales fall into this category of measures. The number of choices that may be selected as categories of a Likert scale are virtually without limit, although the five or seven category scales are the most prominent. With an increase in the number of categories, it may be argued that the accuracy of the category selected becomes crisper. However, regardless of the granularity of the categories, ordinal scales are merely ordered. The distance between each category, sometimes referred to as the interval, is incorrectly assumed to be equal.

Interval scales possess a definite and fixed interval about them such as is observed when viewing that the temperature is 70 degrees Fahrenheit. There does exist a scale created using the freezing and boiling points of water to define 32 degrees and 212 degrees, respectively. However, even though a fixed interval scale exists, there is no benchmark value that initiates an absolute zero value (the Kelvin scale, however, does possess such a value) so equations such as the 32 degrees * 2 = 64 degrees make no logical sense. Equations involving temperature must first be converted to Kelvin scale for computation purposes, and then converted back to the original scale. Interval scales permit addition and subtraction operations, but multiplication and division are not possible.

Ratio scales have an absolute zero base, possess an interval, and implicitly possess order. The number line is such a scale, and all mathematical operations can be conducted on it. To perform any kind of meaningful assessment requires the utilization of a ratio scale. The logical justification in using ratio-based mathematics to determine a value for an ordinal measure rests in the un-
nderlying philosophy. What is crucial to the calculation of a value by which an ordinal scale measure can be compared to another is the means by which the resulting value is interpreted. Thus, merely claiming that an average value of an ordinal scale based on the assignment of a set of integers to the values, i.e., $SA = 1$, $A = 2$, etc, is not sufficient to be able to claim that a weighted average captures the respondents’ intent for there is an implicit interval in that interpretation, and ordinal scales have no such interval associated with them. Further, given a group of n individuals arguing over a state-

3. SIMULATIONS OF THE MEASURE OF CONSENSUS AND DISPERSION

Table 1 shows a set of values for a five-
category Likert scale, $n = 12$. The weighted mean, weighted standard deviation, consensus and dissension values are also provided. It can be easily observed that as the values move from the extreme values (row 1) to only one value (row 10), the consensus measure proceeds from 0 to 1, or 0% to 100%. It is reasonable to expect that of a group of 12 individuals in which two groups of six take opposing views, the consensus is zero. It is not possible for the group to be in further dissent. The dissension is defined as 1 minus Cns, so the Dis column is an easy transformation.

The consensus measure also functions very well as a measure of dispersion. Using the weighted standard deviation column, the values are graphed against the consensus measure, yielding an R^2 of 0.996. However, row 1 shows a weighted standard deviation of 8.0 for the extreme case, a value that is not intuitive. The Cns measure, however, gives a value of 0 for the same case. Regardless of n, the Cns will always be 0 but the weighted standard deviation will change. This interpretation permits the consensus measure to function as a substitute for dispersion.
4. ILLUSTRATION OF THE APPLICATION OF THE CONSENSUS MEASURE

Data was taken from one of the author's Advanced Systems Development classes for the Fall 2004 semester. The issues are provided in Table 2(a) and the tabulation of the data is shown in Table 2(b) and Table 2(c). Thus, issue 1 on personal attire ranges from 1 to 5 (low to high). For this analysis, the survey categories ranged from strongly disagree to strongly agree. The number of items in each category is counted and the weighted mean, weighted standard deviation, and consensus (as a percent) is calculated. From the data it is difficult to identify trends and meaningful comparisons. Counting the overall total might suggest that the highest value wins, but the degree of consensus (the dispersion of the data), suggests otherwise.

![Figure 1: The weighted mean vs. consensus.](image)

The data of figure 1 show a clear bifurcation of students into two groups, one centered on about 4.0 and the other on about 4.7. Given that 5 is the desired rating for each student's grade, the mean seems to identify the better performers. However, when the consensus is taken into account, the diagram analysis is more challenging and the knowledge gleaned from the charts more significant. Recall the earlier discussion on how the weighted mean can result in extremely erroneous information such as what occurs when \(\frac{1}{2n} \) selects SA and the other \(\frac{1}{2n} \) selects SD. The weighted mean is Neutral, and it would be inaccurate to permit a reader to assume that the entire population was unable to form an opinion on the issue under discussion. In fact, the population has formed very strong, but opposing, opinions. Using the weighted mean fails to capture this dimension. On the other hand, providing a standard deviation or weighted standard deviation, while accurately capturing the dispersion, requires a ratio scale; Likert scales are, of course, ordinal. The consensus measure, using the unit interval of 0 to 1 as the set of all possible values of dispersion, conveys an immediate sense of agreement or dispersion. The closer we are to 1, or 100%, the less the dispersion and the greater the agreement. We turn to Table 2 for a closer examination of some details.

The consensus values range from a low of 71% to a high of 96.5%, a difference of 25.5%. Those values at the lower end of the range are in less "agreement" than the values at the upper range. Further, the lower the value the greater the dispersion, for there is less consensus. Thus, we interpret the weighted mean value of 3.6 (row 6 of Table 2) as the least desirable value and also note that the dispersion about that number is also the greatest; stated differently, a group of individuals debating and discussing the value assigned to this issue possesses greatest disagreement. A combination of low weighted mean and low consensus indicates the issue 6, *enunciation and tone*, was handled least well by the students.

The highest agreement, 96.5%, has a mediocre weighted mean of 3.95 for issue 9, *asked or responded to questions well*. Clearly it was relatively easy for the reviewer to count the number of issues asked and answered, and the assessment of the quality of response was in strong agreement. Other issues, however, leave considerable opportunities for debate as to their mastery. If we decide that the lower half of the consensus values require additional effort to master, then all consensus values of 83.75% or less reflect qualities that need to be mastered by the students. According to the data, issues 1 *Appearance*, 2 *Professional Attire*, 4 *Body Language*, 5 *Introduction*, 6 *Enunciation and tone*, 8 *Group presence*, 10 *Organized*, 11 *Good eye contact*, and 12 *Attentive*, are in deficit. On the other hand, issues 3 *Grooming*, 7 *Vocabulary*, 9 *Asked or responded to questions well*, 13 *Friendly*, 14 *Asked appropriate questions or provided the questions*, and 15 *Answers appropriately and correctly*, have high agreement.
This example illustrates how the consensus measure can be used to rank ordered categories such that those categories can be logically compared and contrasted. Further, this measure permits for the analysis of classroom data, frequently assembled by faculty in the form of ordered categorical frequencies that can be used to rank individuals or groups. It is obvious that a weighted mean is insufficient by itself for any meaningful evaluation.

5. CONCLUSION

The consensus measure, originally developed for use in group decision-making activities, has emerged as a useful tool in understanding dispersion of ordinal data by transforming the unit interval values to percentages. Hence, the consensus measure can be interpreted to possess the same information as a weighted standard deviation measure, except that it is much easier to understand and utilize dispersion when represented as a percentage. Low consensus values can also be interpreted as having a high dispersion about the weighted mean value, and high consensus values have a low dispersion about the weighted mean.

Utilizing the Likert scale has been a continuing problem when seeking ways in which to tabulate and compare the values of ordinal scales. This measure breaks new ground in providing a tool for measuring student and instructor perceptions as collected via any ordinal scale.

6. REFERENCES

TABLE 1: CONSENSUS RESULTS UNDER VARIOUS POPULATION DISTRIBUTIONS

<table>
<thead>
<tr>
<th></th>
<th>SA</th>
<th>A</th>
<th>N</th>
<th>D</th>
<th>SD</th>
<th>wMean</th>
<th>wStdDev</th>
<th>Cns Consensus</th>
<th>Dis Dissent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td>3.0000</td>
<td>8.0000</td>
<td>0.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
<td>2.9167</td>
<td>5.6146</td>
<td>0.0492</td>
<td>0.9508</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td>2.8333</td>
<td>5.2083</td>
<td>0.0996</td>
<td>0.9004</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td></td>
<td>2.9167</td>
<td>4.3241</td>
<td>0.1468</td>
<td>0.8532</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td></td>
<td>2.4167</td>
<td>2.3241</td>
<td>0.4437</td>
<td>0.5563</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td></td>
<td>2.7500</td>
<td>1.3611</td>
<td>0.6103</td>
<td>0.3897</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td></td>
<td>2.5833</td>
<td>0.9907</td>
<td>0.6866</td>
<td>0.3134</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td>2.5833</td>
<td>0.6146</td>
<td>0.7676</td>
<td>0.2324</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>2.2500</td>
<td>0.3750</td>
<td>0.8553</td>
<td>0.1447</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

TABLE 2(A): STUDENT ISSUES INCLUDED IN THE SAMPLE STUDY

<table>
<thead>
<tr>
<th>Question</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Appearance (Personal Attire)</td>
</tr>
<tr>
<td>2</td>
<td>Professional Attire</td>
</tr>
<tr>
<td>3</td>
<td>Grooming</td>
</tr>
<tr>
<td>4</td>
<td>Body Language</td>
</tr>
<tr>
<td>5</td>
<td>Introduction</td>
</tr>
<tr>
<td>6</td>
<td>Enunciation and tone</td>
</tr>
<tr>
<td>7</td>
<td>Vocabulary</td>
</tr>
<tr>
<td>8</td>
<td>Group presence</td>
</tr>
<tr>
<td>9</td>
<td>Asked or responded to questions well</td>
</tr>
<tr>
<td>10</td>
<td>Organized</td>
</tr>
<tr>
<td>11</td>
<td>Good eye contact</td>
</tr>
<tr>
<td>12</td>
<td>Attentive</td>
</tr>
<tr>
<td>13</td>
<td>Friendly</td>
</tr>
<tr>
<td>14</td>
<td>Asked appropriate questions or provided questions</td>
</tr>
<tr>
<td>15</td>
<td>Answer are appropriate and correct</td>
</tr>
</tbody>
</table>
TABLE 2(B): RAW STUDENT RESPONSES

Raw Student Responses by Student Number

<table>
<thead>
<tr>
<th>Q</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

TABLE 2(C): TABULATION AND ANALYSIS

<table>
<thead>
<tr>
<th>Q</th>
<th>Tot</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>wMean</th>
<th>wStDev</th>
<th>Cns%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>96</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>15</td>
<td>4.5714</td>
<td>0.8345</td>
<td>73.6%</td>
</tr>
<tr>
<td>2</td>
<td>87</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>12</td>
<td>6</td>
<td>4.1429</td>
<td>0.6122</td>
<td>80.1%</td>
</tr>
<tr>
<td>3</td>
<td>88</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>15</td>
<td>5</td>
<td>4.1905</td>
<td>0.3741</td>
<td>84.8%</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>11</td>
<td>8</td>
<td>4.2570</td>
<td>0.5918</td>
<td>78.3%</td>
</tr>
<tr>
<td>5</td>
<td>89</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>12</td>
<td>7</td>
<td>4.2381</td>
<td>0.5578</td>
<td>79.7%</td>
</tr>
<tr>
<td>6</td>
<td>75</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>4</td>
<td>4</td>
<td>3.5714</td>
<td>0.9388</td>
<td>71.0%</td>
</tr>
<tr>
<td>7</td>
<td>81</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>16</td>
<td>1</td>
<td>3.8571</td>
<td>0.3265</td>
<td>87.1%</td>
</tr>
<tr>
<td>8</td>
<td>89</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>8</td>
<td>4.2381</td>
<td>0.7007</td>
<td>76.5%</td>
</tr>
<tr>
<td>9</td>
<td>83</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>20</td>
<td>0</td>
<td>3.9524</td>
<td>0.0907</td>
<td>96.5%</td>
</tr>
<tr>
<td>10</td>
<td>98</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>15</td>
<td>4.6667</td>
<td>0.4762</td>
<td>81.1%</td>
</tr>
<tr>
<td>11</td>
<td>88</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>9</td>
<td>8</td>
<td>4.1905</td>
<td>0.8027</td>
<td>74.9%</td>
</tr>
<tr>
<td>12</td>
<td>89</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>12</td>
<td>7</td>
<td>4.2381</td>
<td>0.5578</td>
<td>79.7%</td>
</tr>
<tr>
<td>13</td>
<td>87</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>18</td>
<td>3</td>
<td>4.1429</td>
<td>0.2449</td>
<td>90.5%</td>
</tr>
<tr>
<td>14</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>16</td>
<td>4.7619</td>
<td>0.3628</td>
<td>86.0%</td>
</tr>
<tr>
<td>15</td>
<td>101</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>17</td>
<td>4.8095</td>
<td>0.3084</td>
<td>88.1%</td>
</tr>
</tbody>
</table>