
Volume 6, Number 9 http://isedj.org/6/9/ February 7, 2008

In this issue:

Teaching Relational Algebra and Relational Calculus: A Programming
Approach

Kirby McMaster Nicole Anderson
Weber State University Winona State University
Ogden, UT 84408 USA Winona, MN 55987

Ashley Blake
unaffiliated

Seabrook, TX 77586 USA

Abstract: This paper describes how relational algebra and relational calculus can be taught using
a programming approach. This is in contrast to the mathematical presentation of these topics in
most database textbooks. For relational algebra, a function library implemented with Visual FoxPro
allows queries to be written as a sequence of function calls–one call per relational algebra operation.
For relational calculus, Prolog can be used to write non-procedural programs for queries. In each
programming environment, database students experience the power and versatility of these query
languages by watching their programs run. In doing so, they gain a greater understanding of the
relational model and SQL.

Keywords: query language, relational algebra, relational calculus, predicate

Recommended Citation: McMaster, Anderson, and Blake (2008). Teaching Relational Algebra
and Relational Calculus: A Programming Approach. Information Systems Education Journal, 6
(9). http://isedj.org/6/9/. ISSN: 1545-679X. (Also appears in The Proceedings of ISECON 2006:
§2125. ISSN: 1542-7382.)

This issue is on the Internet at http://isedj.org/6/9/

ISEDJ 6 (9) Information Systems Education Journal 2

The Information Systems Education Journal (ISEDJ) is a peer-reviewed academic journal
published by the Education Special Interest Group (EDSIG) of the Association of Information
Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1545-679X. • First issue: 8 Sep 2003.
• Title: Information Systems Education Journal. Variants: IS Education Journal; ISEDJ. • Phys-
ical format: online. • Publishing frequency: irregular; as each article is approved, it is published
immediately and constitutes a complete separate issue of the current volume. • Single issue price:
free. • Subscription address: subscribe@isedj.org. • Subscription price: free. • Electronic access:
http://isedj.org/ • Contact person: Don Colton (editor@isedj.org)

2007 AITP Education Special Interest Group Board of Directors

Paul M. Leidig
Grand Valley State Univ
Past President 2005-2006

Don Colton
Brigham Young Univ Hawaii

EDSIG President 2007

Robert B. Sweeney
Univ South Alabama
Vice President 2007

Patricia Sendall
Merrimack College

Secretary 2007

Kenneth A. Grant
Ryerson University

Treasurer 2007

Wendy Ceccucci
Quinnipiac University
Member Services 2007

Thomas N. Janicki
Univ NC Wilmington
Director 2006-2007

Gary Ury
NW Missouri St

Director 2006-2007

Albert L. Harris
Appalachian State Univ

JISE Editor

Valerie J. Harvey
Robert Morris Univ
Chair ISECON 2007

Ronald I. Frank
Pace University

Director 2007-2008

Kathleen M. Kelm
Edgewood College
Director 2007-2008

Alan R. Peslak
Penn State

Director 2007-2008

Information Systems Education Journal 2006-2007 Editorial and Review Board

Don Colton
Brigham Young Univ Hawaii

Editor

Thomas N. Janicki
Univ of North Carolina Wilmington

Associate Editor

Samuel Abraham
Siena Heights Univ

Janet Helwig
Dominican Univ

D. Scott Hunsinger
Appalachian State Univ

Terri L. Lenox
Westminster College

Doncho Petkov
Eastern Connecticut St U

Steve Reames
Angelo State Univ

Michael Alan Smith
High Point University

Belle S. Woodward
Southern Illinois Univ

Charles Woratschek
Robert Morris Univ

Peter Y. Wu
Robert Morris Univ

EDSIG activities include the publication of ISEDJ, the organization and execution of the annual
ISECON conference held each fall, the publication of the Journal of Information Systems Education
(JISE), and the designation and honoring of an IS Educator of the Year. • The Foundation for
Information Technology Education has been the key sponsor of ISECON over the years. • The
Association for Information Technology Professionals (AITP) provides the corporate umbrella under
which EDSIG operates.

c© Copyright 2008 EDSIG. In the spirit of academic freedom, permission is granted to make and
distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document
is presented, and it is not modified in any substantial way.

c© 2008 EDSIG http://isedj.org/6/9/ February 7, 2008

ISEDJ 6 (9) McMaster, Anderson, and Blake 3

Teaching Relational Algebra and Relational

Calculus: A Programming Approach

Kirby McMaster
kmcmaster@weber.edu

Nicole Anderson

nanderson1@weber.edu
Weber State University

Ogden, UT 84408

Ashley Blake
ablaketx@hotmail.com

Seabrook, TX 77586

ABSTRACT

This paper describes how relational algebra and relational calculus can be taught using a pro-

gramming approach. This is in contrast to the mathematical presentation of these topics in

most database textbooks. For relational algebra, a function library implemented with Visual

FoxPro allows queries to be written as a sequence of function calls--one call per relational al-

gebra operation. For relational calculus, Prolog can be used to write non-procedural programs

for queries. In each programming environment, database students experience the power and

versatility of these query languages by watching their programs run. In doing so, they gain a

greater understanding of the relational model and SQL.

Keywords: query language, relational algebra, relational calculus, predicate

1. INTRODUCTION

An article by Darwen and Date entitled "On

the Relational Algebra vs. Calculus" (2005)

was posted last year on the dbdebunk.com

web site. In this article, each author an-

swered the question "What precisely is the

difference between an algebra and a calcu-

lus...?" Their replies focused primarily on

mathematical characteristics of relational

algebra (RA) and relational calculus (RC),

although Date did mention some database

implementation issues.

RA and RC are examples of concepts that

have a mathematical model and a computer

implementation. In such cases, it is com-

mon for the mathematical version to differ in

important ways from the computer repre-

sentation. For example, a mathematical

function is a set of ordered pairs of values,

in which no two pairs can have the same

first value. Each first (input) value in an

ordered pair determines the second (output)

value. All pairs must have both an input

value and an output value. The nature of a

function in a programming language de-

pends on how functions are implemented in

the language. With Java, some functions

have no input parameters (e.g.

Math.random()), and some do not have a

return value (e.g. void main(String args[])).

The coverage of RA and RC in leading data-

base textbooks usually takes a mathematical

approach. For example, the texts by Con-

nolly (2005), Elmasri (2004), and Silber-

schatz (2005) present these topics as

mathematical concepts using mathematical

(e.g. Greek letters) notation. End-of-

chapter problems are "pencil-and-paper"

exercises, where students write queries us-

ing the mathematical notation but are un-

able to run them on the computer. Many

years ago Dijkstra, in his paper "On the Cru-

c© 2008 EDSIG http://isedj.org/6/9/ February 7, 2008

ISEDJ 6 (9) McMaster, Anderson, and Blake 4

elty of Really Teaching Computer Science"

(1998), suggested that students learn best

by writing code and verifying it solely

through formal methods. Database text-

books unwittingly support this approach in

their coverage of RA and RC, since no envi-

ronment is provided for students to execute

RA and RC query programs.

This is in contrast to most programming

courses, where an important part of learning

depends on students being able to see the

effects of their code as it executes. To dem-

onstrate how a computer implementation

differs from a mathematical model, students

need to have software available to experi-

ment with and observe how it behaves. Stu-

dents learn mathematics and computer con-

cepts more effectively when they can work

with actual computer representations. This

is particularly true when we teach students

how to query using RA and RC.

Unfortunately, few computer implementa-

tions are available for RA and RC. Relational

database products offer SQL as the primary

query language. Some form of Query-By-

Example is included with desktop database

programs. One of the few database prod-

ucts to offer RA as a query language is the

LEAP RDBMS (Leyton, 2005). Also, since RC

is a form of predicate calculus, some Prolog

compilers can be used to approximate RC

queries.

In this paper, we will show how to write and

execute RA and RC query programs. For RA

queries, instead of using the LEAP RDBMS,

we prefer to use a special RA function library

that we have developed for the Visual Fox-

Pro environment. For RC queries, we utilize

predicate calculus features in the Turbo

Prolog compiler.

2. WHY TEACH RELATIONAL ALGEBRA

AND RELATIONAL CALCULUS?

The question might arise: Do we need to

teach RA and RC in a database course? We

often hear the statement: "Students only

need to learn SQL." Robbert and Ricardo

(2003) presented a paper in 2003 entitled

"Trends in the Evolution of the Database

Curriculum." The authors conducted surveys

of database educators in 1999, 2001, and

2002, asking them which topics are included

in their database courses. For the 106 re-

spondents in the 2001 survey, 92% said

they covered SQL, 70% included RA, but

only 42% mentioned RC. Apparently, many

database educators do not feel that RA and

RC are essential topics in their courses.

We believe otherwise. Teaching SQL is a

major part of a database course, but cover-

age of RA and RC is also important. There

are several reasons for this:

1. RA provides the relational model with a

flexible way to query a database. The

RA operations allow specific rows and

columns from a single table to be chosen

to obtain the desired data. The RA op-

erations also define how the data in

separate tables can be combined both

horizontally and vertically as needed for

a query.

2. Knowledge of RA facilitates learning and

using SQL as a query language. The ba-

sic syntax of the SQL SELECT statement

provides a simple framework for combin-

ing RA operations to express a query.

When writing an SQL query statement, it

helps to think in terms of the RA opera-

tions needed to retrieve data from the

database.

3. The query processor component of the

DBMS engine translates SQL code into a

query plan that includes RA operations.

Anyone who writes DBMS query process-

ing software or needs to optimize SQL

query execution will benefit from an un-

derstanding of RA.

4. Codd's first database paper "A Relational

Model of Data for Large Shared Data

Banks" (1970) did not mention RA, but it

did suggest the use of predicate calculus

(the basis for RC) as a query language.

RA was introduced in later papers.

5. RC is the foundation for Query-By-

Example, which provides a user-friendly

interface for databases.

6. Predicate calculus (and RC) can be used

to develop an intelligent front-end for a

database (e.g. an expert system).

7. Learning RA and RC makes a student

aware of conceptual and practical differ-

ences between procedural and non-

procedural query languages.

If coverage of RA and RC in a database

course is considered to be important, the

next issue is how to provide this coverage.

c© 2008 EDSIG http://isedj.org/6/9/ February 7, 2008

ISEDJ 6 (9) McMaster, Anderson, and Blake 5

The remainder of this paper describes a pro-

gramming approach for teaching RA and RC.

3. TEACHING RELATIONAL ALGEBRA

RA consists of a set of unary and binary op-

erations on tables that can be performed in

sequence to yield a result table that satisfies

a query. For example, suppose a database

consists of two tables, STOCK and STKTYPE,

which are described as follows:

STOCK STKTYPE

SNo (PK) TType (PK)

SType (FK) TName

SName ROP

QOH OSize

OnOrder

This model assumes that inventory items

(stock) are divided into categories (types).

Attributes that apply to individual items (e.g.

QOH—quantity on hand) are recorded in the

STOCK table. Attributes that apply to all

items of the same type (e.g. ROP—reorder

point) are included in the STKTYPE table.

The two tables are linked by a common type

code (STYPE and TTYPE).

Query: List the stock number, stock

name, quantity on hand, reorder point,

and order size for all stock items in

which the quantity on hand is at or below

the reorder point, and no order has yet

been placed (OnOrder = 'N').

The usual textbook approach for expressing

queries in terms of RA operations involves

using a mathematical notation that includes

both functional operators (select σ, project
π) and infix operators (join ��). The
above query can be expressed in this nota-

tion as:

πSNo,SName,QOH,ROP,OSize(

 σOnOrder='N'(σQOH<=ROP(

 STOCK �� SType=TType STKTYPE)))

There are some problems with this mathe-

matical version of RA operations:

1. Most database students are not comfort-

able with the mathematical notation, es-

pecially the arbitrary use of Greek letters

and the "bowtie" symbol.

2. The functional notation and infix notation

for operations are difficult to mix in ex-

pressions involving several RA opera-

tions. The notation also disguises the

procedural nature of RA as a query lan-

guage. Breaking complex expressions

into several steps, each step involving

one operation, can lessen these prob-

lems. For example, the query expres-

sion shown above can be divided into

the following sequence of operations:

TEMP1 ←

STOCK �� SType=TType STKTYPE

TEMP2 ← σQOH<=ROP(TEMP1)

TEMP3 ← σOnOrder='N'(TEMP2)

TEMP4 ←

πSNo,SName,QOH,ROP,OSize(TEMP3)

3. From a programming language point of

view, the notation described above is in-

correct regarding the number of pa-

rameters that are involved in these op-

erations. This applies specifically to the

selection, projection, and joint opera-

tions. For example, the notation

σQOH<=ROP(TEMP1)

implies that the selection operation has

one input parameter, a table. The sub-

script after the sigma symbol suggests

that each row condition requires a dif-

ferent selection function. To implement

the selection operation as a single func-

tion would require two parameters, a ta-

ble and a row condition.

4. Students cannot execute query pro-

grams written in the mathematical nota-

tion. As a result, they do not receive

feedback on how RA operations behave.

Instead of specifying RA queries in terms of

mathematical expressions, our approach is

to have a library function for each RA opera-

tion. A version of this function library is cur-

rently implemented in Visual FoxPro as a

procedure file called RALGPROC. Using this

approach, a query program is written as a

sequence of function calls. Each library

function has one or two input parameters

that are tables, plus other input parameters

as necessary. The output of each function is

another table. The library functions provide

database students with a more familiar rep-

c© 2008 EDSIG http://isedj.org/6/9/ February 7, 2008

ISEDJ 6 (9) McMaster, Anderson, and Blake 6

resentation of RA operations than does the

mathematical notation.

Library functions are provided for the follow-

ing RA operations:

Operation Function

selection TSelect(Table1,RowCond)

projection TProject(Table1,ColList)

join TJoin(Table1,Table2,JoinCond)

union TUnion(Table1,Table2)

intersection TIntersect(Table1,Table2)

difference TMinus(Table1,Table2)

product TProduct(Table1,Table2)

division TDivide(Table1,Table2)

rename TRename(Table1,OldColName,

 NewColName)

Not all of these functions are necessary for

completeness. They are included in the li-

brary because most textbooks discuss the

first eight operations. The ninth operation,

rename, has been recommended by Date

(2004).

Note that the selection, projection, join, and

rename operations include extra parameters

that are not table names. For selection and

join, the extra parameter is a logical expres-

sion or predicate that acts as a row condition

or a join condition. For projection, the extra

parameter is a list of column names. For

rename, two extra parameters are needed to

specify the old and new column names.

The sample query described earlier in

mathematical notation can be written as a

FoxPro program file, in which calls are made

to functions in RALGPROC:

* Relational Algebra – Stock Query

set procedure to RALGPROC

T1 = TJoin('STOCK','STKTYPE',

 [SType=TType])

T2 = TSelect(T1,[QOH<=ROP])

T3 = TSelect(T2,[OnOrder='N'])

T4 = TProject(T3,

 [SNo,SName,QOH,ROP,OSize])

browse

Very little knowledge of FoxPro is needed to

use the RALGPROC library, since the heart of

each query program is a sequence of RA

function calls. An asterisk at the start of a

line indicates a comment. The set procedure

command makes the library functions avail-

able (similar to #include in C). The vari-

ables T1 to T4 represent intermediate result

tables (stored in memory). FoxPro string

delimiters can be pairs of single quotes,

pairs of double quotes, or matched pairs of

square brackets. Finally, the FoxPro browse

command displays the final result table.

More than one program variation is possible

for each query, since the procedural nature

of RA allows different sequences of opera-

tions to yield the same result table. For ex-

ample, if one of the selection operations is

performed before the join operation, the re-

vised code would be:

* Relational Algebra – Stock Query

* Perform Select before Join

set procedure to RALGPROC

T1 = TSelect('STOCK',[OnOrder='N'])

browse

T2 = TJoin(T1,'STKTYPE',

 [SType=TType])

browse

T3 = TSelect(T2,[QOH<=ROP])

browse

T4 = TProject(T3,

 [SNo,SName,QOH,ROP,OSize])

browse

In the above code, the selection operation

that compares QOH with ROP remains after

the join operation, since the two attributes

are in different tables. We have also put a

browse statement after each function call to

display the intermediate table for each RA

operation as the query proceeds.

The intent in using the function library is not

to determine the fastest or most efficient

way to implement a query. Rather, it is to

allow students to see how RA operations can

be organized to extract the data requested

for a query.

When using the RALGPROC library functions,

problems can arise when the same column

name appears in more than one table.

Whenever two tables are joined, the column

names in the first table are preserved, but

any duplicate column names in the second

table are changed. When the set opera-

tions--union, intersection, and difference--

are performed, only the column names in

the first table appear in the result. These

problems can be avoided by using the Re-

name function, but students will have an

easier time writing query programs if all col-

c© 2008 EDSIG http://isedj.org/6/9/ February 7, 2008

ISEDJ 6 (9) McMaster, Anderson, and Blake 7

umn names in their database schema are

unique.

Appendix A describes a database project

that will give students practice in writing and

executing RA query programs.

4. TEACHING RELATIONAL CALCULUS

In a relational database, a table or query is

a special type of set--a set of rows. RC pro-

vides, through the use of predicates, a way

to specify the data in tables and the result

set for each query. There are two common

ways to define a set mathematically: (1) list

the members of the set, or (2) state proper-

ties or conditions that all members of the set

must satisfy. For example, the set listed as

A = {2,3,5,7,9,11,13,17}

can also be defined as

A = {x | integer x, x > 0, x2 < 400,

x is a prime}

All of the above conditions for x must be

true for x to be a member of set A.

In programming, a predicate is a function in

which the return value is either true or false.

Each of the conditions defining the above set

A can be viewed as a predicate having input

parameter x. The condition "x is an integer"

can be satisfied by the choice of a datatype

for the parameter. The other three predi-

cates could be written in functional form as:

positive(x)

squareLessThan400(x)

prime(x)

The predicate setA(x) could then be defined

by the logical expression:

setA(x) if positive(x)

 and squareLessThan400(x)

 and prime(x)

Set A consists of all values of x for which

this logical expression is true. This is pre-

cisely how queries are represented using RC.

For the predicates defined in RC queries,

however, the parameter x represents table

rows or attributes.

When RC is implemented as a Prolog pro-

gram, each table and query is represented

by a predicate. Table predicates are defined

by listing the facts (data). Query predicates

are defined by rules (logical expressions). A

query predicate is true whenever the logical

expression for the rule is true. The Prolog

query processor searches through the table

predicates to determine which row and col-

umn values cause the query predicate to be

true. Query output consists of all parameter

values for which the query predicate is true.

Because the Prolog query engine does all of

the searching and pattern matching, the

program needs to provide only a description

of the desired data. This is why the user

program is non-procedural.

A Turbo Prolog version of the sample query

described in the previous section is shown

below:

/* Inventory Database

Stock Query (Predicate Calculus)

*/

domains

SNo,QOH,ROP,OSize = integer

SType,SName,OnOrder,TType,TName

 = symbol

predicates

STOCK(SNo,SType,SName,QOH,OnOrder)

STKTYPE(TType,TName,ROP,OSize)

QUERY1(SNo,SName,QOH,ROP,OSize)

clauses /* Facts and Rules */

STOCK(101,"B","Prune Basket",65,"N").

/* data for other STOCK table rows

 goes here */

STKTYPE("B","Basket",60,90).

/* data for other STKTYPE table rows

 goes here */

QUERY1(SNo,SName,QOH,ROP,OSize) if

 STOCK(SNo,SType,SName,QOH,OnOrder)

 and STKTYPE(TType,TName,ROP,OSize)

 and SType = TType

 and QOH <= ROP

 and OnOrder = "N".

The Prolog program shown above defines

domains for each table column using built-in

integer and symbol (string) data types.

Predicate headers are then defined for the

STOCK and STKTYPE tables and for QUERY1.

In the clauses section, the STOCK and

STKTYPE tables are defined by facts. One

sample row is shown for each table. Rows

defined by facts are evaluated as true by the

Prolog query engine.

The QUERY1 predicate is defined by a rule

having an if statement with a five-part logi-

cal expression. Each part of the logical ex-

pression is treated as a predicate--two in-

c© 2008 EDSIG http://isedj.org/6/9/ February 7, 2008

ISEDJ 6 (9) McMaster, Anderson, and Blake 8

volve tables and three involve attributes.

Since all parts of the expression are con-

nected by and, the QUERY1 predicate is true

only when all parts are true.

Prolog is a complex language with many fea-

tures. Students require only a small part of

Prolog to write RC queries. All they need is

the ability to define predicates--one for each

table using facts, and one for each query

using rules.

Appendix B describes a database project

that will give students practice in writing and

running RC query programs.

5. SUMMARY AND CONCLUSIONS

This paper has emphasized the importance

of teaching RA and RC as query languages in

database courses. These languages should

be taught in environments that allow query

programs to be compiled and run.

Instead of using the usual mathematical no-

tation for RA operations, we have created a

function library in Visual FoxPro to perform

RA queries. We have also shown how to use

Turbo Prolog to express RC queries in a non-

procedural form. Prolog is used because it

implements the first-order predicate calculus

that is the basis for RC. Sample query pro-

grams have been demonstrated in both the

FoxPro and Prolog environments.

We have taught database courses for several

years that use this programming approach in

teaching RA and RC. Course evaluations

indicate that most students enjoy having

programming projects in the database

course, including projects for RA and RC.

We have yet to hear a student say that

she/he prefers mathematical representations

for these query languages.

The heart of Information Systems is soft-

ware and data. Programming can provide a

valuable learning tool throughout the data-

base course, not just for SQL. Using this

approach, students can learn RA and RC the

same way they learn other computing con-

cepts--by writing programs and watching

them run.

6. REFERENCES

Codd, E. F., "A Relational Model of Data for

Large Shared Data Banks." Communica-

tions of the ACM, June, 1970.

Connolly, Thomas and Begg, Carolyn, Data-

base Systems: A Practical Approach to De-

sign, Implementation, and Management

(4th ed). Harlow, England: Addison-

Wesley, 2005.

Darwen, Hugh, and Date, C. J., "On the Re-

lational Algebra vs. Calculus."

www.dbdebunk.com, 2005.

Date, C. J., An Introduction to Database

Systems (8th ed). Addison-Wesley, Bos-

ton, MA, 2004.

Dijkstra, Edgar, "On the Cruelty of Really

Teaching Computer Science." Austin, TX,

1988.

Elmasri, Ramez, and Shamkant Navathe,

Fundamentals of Database Systems (4th

ed). Addison-Wesley, Boston, MA, 2004.

Leyton, Richard, "LEAP RDBMS: An Educa-

tional Relational Database Management

System." leap.sourceforge.net, 2005.

Robbert, Mary Ann, and Ricardo, Catherine

M., "Trends in the Evolution of the Data-

base Curriculum." ITiCSE 2003.

Silberschatz, Abraham, et al, Database Sys-

tem Concepts (5th ed). New York:

McGraw Hill, 2005.

c© 2008 EDSIG http://isedj.org/6/9/ February 7, 2008

ISEDJ 6 (9) McMaster, Anderson, and Blake 9

APPENDIX A: RELATIONAL ALGEBRA PROJECT

In this project, you will use a Visual FoxPro implementation of part of the DreamHome Rental

Database in the text (Connolly, 2005). You will perform several queries on this database using a

special library of relational algebra functions.

You will be given four FoxPro tables: BRANCH, STAFF, PROPERTY, and OWNER. Descrip-

tions of these tables are shown below (compare with the textbook version, since field names have

been revised to make them unique). Primary key and foreign key constraints are not enforced in

these tables.

 BRANCH (b_branchno, b_street, b_city, b_postcode)

 STAFF (s_staffno, s_fname, s_lname, s_position, s_sex, s_dob, s_salary, s_branchno)

 PROPERTY (p_propno, p_street, p_city, p_postcode, p_type, p_rooms, p_rent)

 OWNER (o_ownerno, o_fname, o_lname, o_address, o_telno)

The data from the textbook has already been entered into the four tables.

Perform each of the following queries by writing a relational algebra program (a sequence of

function calls) for each query. A special Visual FoxPro procedure file (RALGPROC.fxp) will be

given to you containing the necessary relational algebra functions.

1. List the branch number, street, and city for all branch offices in the city of London.

2. List the staff number, last name, sex, and salary for all staff members that are male or earn

more than 10,000 (British) pounds per year.

3. List the staff number, last name, position, and branch number for all staff members that work

in the city of London.

4. List the property number, city, rooms, and rent for all rentals that have at least 3 rooms and

are listed by a female staff member.

5. List the property number, city, type, and rent for all rentals that are either located in Aberdeen

or listed with the branch in Glasgow.

6. List the first name and last name of staff members who work in Glasgow and of owners who

own property in Glasgow.

7. List the branch number and city for all branches that do

not have any male staff members.

8. List the branch number and city for all branches that have both houses and flats to rent.

Turn in printouts of the following for each of the queries:

1. The source code of the relational algebra program for the query.

2. The result table output for the query.

c© 2008 EDSIG http://isedj.org/6/9/ February 7, 2008

ISEDJ 6 (9) McMaster, Anderson, and Blake 10

APPENDIX B: RELATIONAL CALCULUS PROJECT

This project is intended to help you understand how relational calculus provides a non-

procedural query language for relational databases. You will examine an implementation of rela-

tional calculus using predicates and rules in Turbo Prolog. The Prolog language is based on

predicate calculus, which is a form of deductive logic.

In this project, you will use a Turbo Prolog definition of four tables from the DreamHome Rental

Database (Connolly, 2005). You will perform eight queries on this database using Prolog's ver-

sion of relational calculus.

The Turbo Prolog program files you will need can be downloaded from the Internet. The

DHRENTAL.PRO text file you will be given contains slightly modified BRANCH, STAFF,

OWNER, and PROPERTY tables of the DreamHome database, expressed as a Prolog program.

Write a new Prolog program that "includes" DHRENTAL.PRO. In your program you are to de-

fine a predicate for each query. Then write one or more relational calculus statements (Prolog

rules) for each query. Your predicate for each query acts like a database view. You can then run

each query as a Goal in the Turbo Prolog Dialog window and see the resulting output.

1. List the branch number and street for all branch offices that are either in Aberdeen or

Glasgow.

2. List the staff number, last name, position, and salary for all staff members that are female and

earn less than 15,000 (British) pounds per year.

3. List the last name, position, branch number, and city for all staff members that don't work in

the city of London.

4. List the property number, city, rooms, rent, and staff number for all rentals that have at least 4

rooms and are listed by a female staff member.

5. List the property number, type, rent, and branch number for all rentals that are either located

in London or listed with the branch in Aberdeen.

6. List the first name and last name of staff members who work in London and of owners who

own property in London.

7. List the client number, first name, last name, and property number of clients who have

viewed a property in Glasgow.

8. For all clients, list the client number, preferred type, maximum rent, property number, and

actual rent for all properties of the client's preferred type in which the actual rent does not

exceed the client's maximum rent and is also less than 400 pounds.

Turn in printouts of the following:

1. Your Prolog program that "includes" the DHRENTAL.PRO program and lists your Prolog

statements for each query.

2. The output for each query.

c© 2008 EDSIG http://isedj.org/6/9/ February 7, 2008

