
Volume 2, Number 27 http://isedj.org/2/27/ May 3, 2004

In this issue:

Integrating Programming and Systems Analysis Course Content:
Resolving the Chicken-or-the-Egg Dilemma in Introductory IS Courses

Rand W. Guthrie
California State Polytechnic University Pomona

Pomona, CA 91768

Abstract: Most undergraduate IT programs require that students learn some computer program-
ming as soon as possible. We have observed however, that in the subsequent systems analysis
courses, students appear to have some difficulty in understanding how the design artifacts they
create in their systems analysis course relate to the production of real computer programs. We
believe that frequent comparisons of software design artifacts to final code improve students’ ability
to create good software designs. We also believe that student programming skill is directly related
to software design skill. Two object-oriented systems analysis and design courses were taught at an
undergraduate university covering identical concepts and content. One course however was supple-
mented with examples of working code that related to directly to the analysis and design examples
used in the class. At the end of the two courses, the students’ ability to integrate the design artifacts
they learned about in class to actual code designs was evaluated through an exam that required shell
code writing, reverse-engineering, and design improvement. The results indicated that students who
were better programmers scored better on the evaluation exam. Students in the course that used
code examples in class also performed significant better than students in the “traditional” course.
This implies that students should be taught programming first (with some high-level architectural
guidance), followed by the system analysis course. Systems analysis and design courses would also
benefit from using code examples that relate to analysis and design constructs.

Keywords: programming, systems analysis and design, learning styles, course integration

Recommended Citation: Guthrie (2004). Integrating Programming and Systems Analysis
Course Content: Resolving the Chicken-or-the-Egg Dilemma in Introductory IS Courses.
Information Systems Education Journal, 2 (27). http://isedj.org/2/27/. ISSN: 1545-679X.
(Preliminary version appears in The Proceedings of ISECON 2003: §3211. ISSN: 1542-7382.)

This issue is on the Internet at http://isedj.org/2/27/

ISEDJ 2 (27) Information Systems Education Journal 2

The Information Systems Education Journal (ISEDJ) is a peer-reviewed academic journal
published by the Education Special Interest Group (EDSIG) of the Association of Information
Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1545-679X. • First issue: 8 Sep 2003.
• Title: Information Systems Education Journal. Variants: IS Education Journal; ISEDJ. • Phys-
ical format: online. • Publishing frequency: irregular; as each article is approved, it is published
immediately and constitutes a complete separate issue of the current volume. • Single issue price:
free. • Subscription address: subscribe@isedj.org. • Subscription price: free. • Electronic access:
http://isedj.org/ • Contact person: Don Colton (editor@isedj.org)

Editor
Don Colton

Brigham Young Univ Hawaii
Laie, Hawaii

The Information Systems Education Conference (ISECON) solicits and presents each year papers
on topics of interest to IS Educators. Peer-reviewed papers are submitted to this journal.

2003 ISECON Papers Chair
William J. Tastle
Ithaca College

Ithaca, New York

Associate Papers Chair
Mark (Buzz) Hensel

Univ of Texas at Arlington
Arlington, Texas

Associate Papers Chair
Amjad A. Abdullat

West Texas A&M Univ
Canyon, Texas

EDSIG activities include the publication of ISEDJ, the organization and execution of the annual
ISECON conference held each fall, the publication of the Journal of Information Systems Education
(JISE), and the designation and honoring of an IS Educator of the Year. • The Foundation for
Information Technology Education has been the key sponsor of ISECON over the years. • The
Association for Information Technology Professionals (AITP) provides the corporate umbrella under
which EDSIG operates.

c© Copyright 2004 EDSIG. In the spirit of academic freedom, permission is granted to make and
distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document
is presented, and it is not modified in any substantial way.

c© 2004 EDSIG http://isedj.org/2/27/ May 3, 2004

ISEDJ 2 (27) Guthrie 3

Integrating Programming and Systems
Analysis Course Content: Resolving the

Chicken-or-the-Egg Dilemma in
Introductory IS Courses

Rand W. Guthrie
Computer Information Systems

California State Polytechnic University, Pomona
Pomona, CA 91768

Abstract

Most undergraduate IT programs require that students learn some computer programming as
soon as possible. We have observed however, that in the subsequent systems analysis
courses, students appear to have some difficulty in understanding how the design artifacts
they create in their systems analysis course relate to the production of real computer
programs. We believe that frequent comparisons of software design artifacts to final code
improve students’ ability to create good software designs. We also believe that student
programming skill is directly related to software design skill. Two object-oriented systems
analysis and design courses were taught at an undergraduate university covering identical
concepts and content. One course however was supplemented with examples of working code
that related to directly to the analysis and design examples used in the class. At the end of
the two courses, the students’ ability to integrate the design artifacts they learned about in
class to actual code designs was evaluated through an exam that required shell code writing,
reverse-engineering, and design improvement. The results indicated that students who were
better programmers scored better on the evaluation exam. Students in the course that used
code examples in class also performed significant better than students in the “traditional”
course. This implies that students should be taught programming first (with some high-level
architectural guidance), followed by the system analysis course. Systems analysis and design
courses would also benefit from using code examples that relate to analysis and design
constructs.

Keywords: programming, systems analysis and design, learning styles, course integration

1. INTRODUCTION

Most undergraduate IT programs require
that students learn some computer
programming as soon as possible. While
students seem to learn the syntax of a
computer language readily enough, the
quality of these early programs in terms of
logic, robustness and maintainability is very
weak. This often leads faculty to wonder
whether we would be better off teaching

students how to design software first, before
teaching them to code. Conversely, we have
observed that when the systems analysis
course follows the programming course,
students appear to have some difficulty in
understanding how the design artifacts they
create in their systems analysis course relate
to the production of real computer
programs. Many systems analysis texts and
courses that we have investigated treat the
production of working computer programs
very lightly if at all. Even texts dealing with

c© 2004 EDSIG http://isedj.org/2/27/ May 3, 2004

ISEDJ 2 (27) Guthrie 4

object-oriented designs and the UML, which
were specifically created to address the
creation of object-oriented programs, seem
far removed conceptually from the world of
programming in most chapters. This leaves
us with a dilemma: which should come first,
the programming course or the design
course?

In this study we attempt to shed some light
on this problem by examining student
understanding of how their systems analysis
artifacts relate to the production of code.
We believe that programming skill is directly
related to design skill. We also believe that
early and frequent references that relate
systems analysis concepts to final code
production increase student understanding
of the purpose of analysis and design
processes, re-enforce learning and retention,
and improve their ability to create robust
designs. We test these hypotheses by
comparing two courses in object-oriented
systems analysis and design that cover
identical material using the same textbook,
but in one of the courses, we introduce and
use actual code produced by the designs
studied in class. Students in both courses
were given an exam at the end of the course
designed to test their understanding of how
designs relate to actual code. The results
clearly indicate that students who rate
themselves as good programmers scored
consistently higher than those who admitted
to being less skilled in programming. The
results also indicate that even students who
rated themselves as being poor
programmers performed better on the exam
in the course where programming concepts
were emphasized than those in the
“traditional” course. This suggests that
students should learn a programming
language before the systems analysis and
design course. Additionally, teaching
strategies that use actual code could
improve learning results in systems analysis
and design courses.

2. BACKGROUND

Booth (2001) explains that the definition of
“good learning” is evolving away from
memorizing towards the development of an
integrated set of skills including research,
analysis, questioning and collaboration. This
educational philosophy is being referred to
as “Constructivism” (Gruender, 1996;

Savery and Duffy, 1995). In their research
on the use of CASE tools in education,
Fowler et.al. (2001) explains that computer
science students predominantly have a
learning style that is both sensory and
visual, and that 80% of all students are
active learners. This suggests that courses
taught in a traditional fact-memorization
mode may be particularly unsuited for
computer science students.

Compared to traditional academic
disciplines, information systems and
computer science are relatively new
pedagogies. These new disciplines are
strongly-related to practice and therefore
most courses have a high skill component.
Whiddett et.al. (2000) suggests that
traditional lectures do not develop skills in
students. Conversely they also note that
skills learned “on-the-job” are too skill-
based and do not generalize well to other
contexts. This suggests that university
courses should be a blend of both theory
and practice, rather than strongly emphasize
one approach over another.

In a study involving PASCAL programming
students, Fleury (1993) noted that
programming students have very different
“thinking habits” and motives than those of
professional programmers. In particular, he
notes that student tend to have a short-term
perspective focused on turning-in a working
assignment, as compared to professionals
who are far more concerned about future
maintainability. This difference identifies
that students are either not seeing or not
being taught the larger picture in
programming courses.

Perkins (1992) explains that when
knowledge is “organized” and placed in a
context, that the knowledge is easier to
remember and more apt to be reused. Gal-
Ezer and Zeldes (2000) state that
“generative knowledge” as defined by
Perkins preserves knowledge for a longer
time, improves understanding, and is used
actively.

Lebow (1993) and Savery and Duffy (1995)
propose a number of teaching principles that
implement constructivist pedagogy. The
principles that relate to this research
include:

c© 2004 EDSIG http://isedj.org/2/27/ May 3, 2004

ISEDJ 2 (27) Guthrie 5

 Provide a context for learning that
supports autonomy and relatedness

 Embed the reasons for learning into
the learning activity itself

 Anchor all learning into a larger task
or problem

 Design an authentic task

3. RESEARCH HYPOTHESIS

Our research hypotheses are founded on the
active-learning, constructivist teaching
philosophies previously discussed. We
believe that the students who have more
programming experience are able to place
their systems analysis learning more easily
into a context, and are better able to
conceptualize the end-result of their UML
designs. This gives rise to our first
hypothesis:

H1: Students who are better
programmers will have a better
understanding of the relationship
between UML designs and final code.

Given the limited knowledge and experience
of software engineering students in
introductory courses, we feel that the
reasons for the design (final code) should be
embedded in systems analysis course
content. Based on the constructivist
principles of “Embedding the reasons for
learning into the learning activity itself” and
“ anchoring” all learning into a larger task or
problem” , it is our expectation that the use
of programming code examples in systems
analysis courses will improve learning. This
gives rise to our second hypothesis:

H2: Students will create better software
designs in systems analysis courses
that use final code examples.

4. RESEARCH METHODOLOGY

Two similar introductory object-oriented
systems analysis and design courses were
taught during the same term at an
undergraduate university. The primary
focus of the course was learning the various
UML diagrams and constructs. Completion of
an introductory Java programming course
was a strictly-enforced prerequisite. Both
courses had similar gender demographics
and size. Students were undergraduate
business degree majors with declared

information systems emphases. Both
courses covered the same material and used
the same textbook (Larman, 2002) The
instructor teaching the traditional course
was a senior member of the faculty with
extensive knowledge of the subject,
including the recent publication of a
textbook on OO Systems Analysis and
Design. The instructor teaching the
integrated course was a newer member of
the faculty with less experience and
expertise, and had initially learned the
course content by attending the senior
faculty member’s course two years
previously. The two courses had a similar
syllabus in terms of pace, exams, and
projects. The instructor of the integrated
course concurrently taught programming
courses, the more senior faculty member
had little or no recent programming
experience either as a practitioner or
instructor. The more experienced faculty
member utilized a theoretical approach that
did not emphasize any particular syntax
rules or use code in any form. The
instructor with current programming
experience emphasized Java programming
syntax in class, variable and method
naming, and in method calls. Code was also
used to illustrate the application of software
“patterns”. Students were shown actual
code samples that related to UML interaction
diagrams and class diagrams as part of the
learning. Students were required to
“reverse-engineer” simple java programs
into corresponding interaction diagrams and
class diagrams. Extra credit was offered to
students who completed a simple UML
design project that produced a working
program. These uses of code appeared in
lectures, in-class activities, projects, and
exams.

The students’ ability to integrate
programming with systems analysis and
design concepts was evaluated through a
one-hour exam given to the students of both
courses during the last week of a regular
ten-week term (three quarters per academic
year). The exam was not a formal part of
the course; students were offered extra
credit for completing the exam on a
graduated scale: the better they performed
on the exam the more extra credit points
they earned. Total extra credit available
amounted to approximately ½ of 1
percentage point in the overall course grade.

c© 2004 EDSIG http://isedj.org/2/27/ May 3, 2004

ISEDJ 2 (27) Guthrie 6

The research instrument contained two
parts; a survey portion and a skills portion.
The survey portion asked a variety of
questions to determine the student’s prior
programming experience, education, and
skill level. Gender demographic data was
also collected. The skills portion consisted of
three tasks to test student’s ability to
integrate programming with UML design. In
the first task, students were required to
write a shell Java program consisting of four
classes from a sequence diagram and a class
diagram. Task two required students to
create a class diagram by reverse-
engineering instructor-supplied Java source
code. Task three required students to re-
engineer a class diagram into “a better
diagram based on your knowledge of three-
tier architecture and software patterns”.

The exams were evaluated by an
independent teaching assistant with three
terms of prior experience grading both
systems analysis and Java course
assignments. A total “percent correct” score
was given to each exam with a moderate
amount of explanatory notation included. All
exams were evaluated in one session with
the first group of exams graded being
compared to the last group to control for
familiarity bias. No significant bias was
noted.

5. RESEARCH FINDINGS

A summary of the findings is shown in Table
1.

Table 1 – Summary of Scores by Group

The average score for the entire group was
.593. Scores showed a tendency towards a
normal distribution with a marked skew
towards 100% (Figure 1). Student
performance on the evaluation exam ranged
broadly, with about half the students
(23/56) scoring above 70% which would be

considered a “passing” grade in most
courses. This figure is surprisingly low,
given that this performance level could be a
fair predictor of how well students really
understood the material they were supposed
to learn.

Figure 1: Distribution of overall
student evaluation scores

0

2

4

6

8

10

12

The distribution of scores for the class
taught “traditionally” (without the use of
computer code) shows an approximate
normal distribution of grades, with 20 out of
31 scoring between 31% - 80%. Two
students scored in the 0%-20% range, and
four students scored in the 80% - 100%
range. Twelve students received scores less
than 50%.

Figure 2: Distribution of Tradition
Methodology Group Scores

0

1

2

3

4

5

6

7

8

The distribution of scores for the class
taught with the use of computer program
code integrated with systems analysis and
design concepts are significantly skewed to
the right, with 20 out of 25 scoring between
60% and 100%. Four students received
scores less than 50% and no students
received scores less than 20%.

Almost half the students surveyed rated
themselves as “okay” programmers (24 out
of 57). The distribution of “okay”
programmers between the two courses was

c© 2004 EDSIG http://isedj.org/2/27/ May 3, 2004

ISEDJ 2 (27) Guthrie 7

even: 12/12. Eighteen students reported
themselves as either being “poor” or “not so

Figure 3: Distribution of Integrated
Methodology Group Scores

0

1

2

3

4

5

6

7

0-
10

%

11
-2

0%

21
-3

0%

31
-4

0%

41
-5

0%

51
-6

0%

61
-7

0%

71
-8

0%

81
-9

0%

91
-1

00
%

Figure 4: Distribution of
“Poor” Programmer Scores

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 5:Distribution of

“Okay” Programmer Scores

0

1

2

3

4

5

6

Figure 6: Distribution of

“Good” Programmer Scores

0

0.5

1

1.5

2

2.5

3

3.5

good”. The distribution between the two
courses was 10 in the traditional course and
8 in the integrated course. Nine out of the
fifty-seven said they were “pretty-good” or
“excellent”, with the distribution as 4 in the
traditional course and 5 in the integrated
course. None classified themselves as
“hackers”, and five students in the
traditional course did not answer that
question. Students who rated themselves as
“poor” or “not so good” averaged .501 with
a normal distribution over most of the range
(Figure 4). Students who said they were
“okay” programmers averaged .592 with
the distribution being skewed to the right
except of a group in the 20% - 30% range
(Figure 5). Students who rated themselves
as “pretty-good” or “excellent” averaged
.720 with a right bias (Figure 6).

6. DISCUSSION OF RESULTS

The results clearly show that a solid
foundation of programming generally
improves students’ ability to relate their
software designs to final code. We believe
that this will result in “better” designs i.e.:
easier for programmers to understand, more
robust, more likely to be usable “as is”, etc.
Beyond the immediate results of this study
however, we believe that both programming
course content and systems analysis course
content can benefit from an integrated
approach. Suggestions for how this
integration might be accomplished are as
follows:

A. Programming Instructor use of UML

In cases where the instructor assigns a
standard “project” to an entire course, the
project assignment details can be provided
to students using systems analysis
constructs such as use cases, interaction
diagrams and class diagrams. Our
experience has shown that students are far
more likely to understand a project
assignment when the instructor includes a
use case and UML diagrams. This shouldn’t
come as a surprise since the UML is based
on “best-practices” relating to how to
describe requirements to programmers.
Admittedly, student creativity is sacrificed
when the instructor provides extensive
requirements, but since only the class shells
are specified in the UML; good design
documentation that is part of the project

c© 2004 EDSIG http://isedj.org/2/27/ May 3, 2004

ISEDJ 2 (27) Guthrie 8

requirements still provide ample
opportunities for student creativity.

B. Trade Publications

Many software trade publications frequently
feature UML diagrams in their articles.
Students can be assigned to find recent
articles that use the design artifacts the
instructor is interested in, and write a brief
summary of an article including a description
and analysis of the design artifacts used.

C. UML Deliverables in Programming
Assignments

Programming students are often required to
submit print outs of their project source
code along with the software files. Personal
experience can attest that the printed code
is seldom given more than a cursory
examination by the instructor. Since the
actual code is available for examination in
the source files, it might be more instructive
and productive for students to document
their project design at a higher level using
UML class and interaction diagrams. Some
software tools will even generate the
diagrams for the student, providing a clear
linkage between the design artifact and final
code.

D. Reference Programs

We suggest introducing a simple object-
oriented computer program at the beginning
of the systems analysis and design course
and then using it throughout the course to
demonstrate how the various design
constructs relate to final code. We have
successfully used a simplified (bank) ATM
machine program written in Java for this
purpose. One strength is of the ATM
program is that students are intuitively
familiar with an ATM’s functionality and the
data inputs and outputs required. The
reference program also serves to remediate
students that have forgotten some of the
syntax from their introductory programming
course. The reference program has proven
even more useful when teaching systems
analysis and design courses to students that
are unfamiliar with object-oriented
programming, or who may have not been
required to complete a programming course
before taking the systems analysis course.
When teaching systems analysis to students

who have not had prior object-oriented
programming experience, we assign the
reference program as homework where the
students are required to get the program to
run on their own personal computer, then
make some minor modifications to variables
and functionality. This basic experience and
review of the programming language gets
the systems analysis course off to a quick
start with everyone more or less at the same
level.

D. Reverse Engineering

When teaching software reverse-
engineering, students are provided with
simple programs of typically five to ten
classes, and are required to produce the
interaction diagrams and class diagrams that
would have produced the code. We first
work through a reverse engineering example
on the board with a very simple program.
We then have the students form groups and
work on a more complicated program during
the class time. Finally, we assign a simple
reverse engineering problem on a quiz or
exam.

E. Shell Programs

As part of the final design project, students
are required to write shell program classes
(containing the class declaration, class
variable declarations, and method
declarations) based on their designs. If the
designs are complex, then students can be
assigned to write shell classes for one or two
of the more important classes.

F. CASE Tools

Some integrated development environments
(IDE’s) or CASE tools can be used for both
code design and code development.
Rational Rose and Together are often used
on for teaching, and both have the capability
of converting UML class diagrams to shell
computer programs in a variety of object-
oriented languages including Java and C++.
There are many other less known software
tools available that can do the same thing.
Many of these tools can also “reverse-
engineer” an object-oriented software
program and produce class diagrams based
on the code. Even if these tools are not
formally used in a student assignment,
students can gain a lot of insight by going

c© 2004 EDSIG http://isedj.org/2/27/ May 3, 2004

ISEDJ 2 (27) Guthrie 9

through the process of code conversion in
class or in a separate lab activity.

7. LIMITATIONS AND FUTURE
RESEARCH

We recognize that there are several potential
sources for error that could bias the results
of this research. Since there were only two
classes and two instructors that participated
in this initial research, there is no control
against differences in teaching style,
personalities and “teaching quality”. It is
possible that at least some performance
differences may be attributed to differences
in teaching style, particularly since there
were significant differences in age,
experience and background from the two
instructors.

Another potential source of research bias
relates to how students select courses.
Student have strong preferences to certain
class days and times. Students also rely
extensively on peer opinion when selecting
instructors. Since course registration gives
priority to students with more units
completed, it is likely that a course that
meets at a more preferred day and/or time,
or where one instructor is preferred over
another, is likely to have more experienced
and/or mature students than another. Since
one course met on Tuesday and Thursday
late in the morning (ideal), and another met
on Monday, Wednesday and Friday (less
than ideal), there is the possibility that our
findings may be influenced by an
experience/maturity bias between the
classes.

The survey instrument was developed by the
instructor teaching the integrated approach
and subsequently reviewed and approved by
the instructor that used the traditional
approach. Students from the class that
integrated code and systems design had
been exposed to all three research tasks in
some form or another prior to taking the
exam. Future research should use an
independent third party to develop the exam
so that it will not closely match the exercises
that the students in the integrated approach
have completed.

This research can be extended in several
interesting ways. The first extension would
be to reverse the research assumption and

see if completion of a systems analysis
course helps students to be “better”
programmers. If this hypothesis also proves
true, we may have to conclude that
programming and systems analysis and
design are not independent and separate
disciplines, but are essential parts of
“software development” skill. The choice
would then be a matter of how much of each
rather than “which one.”

Another research extension considers the
experience of the test subjects. This
research examined introductory IS students
with a minimum amount of skill and no
practical experience. This limits the
generalizability of our study to academic
teaching situations. It would be very
interesting to apply a similar research
instrument to working professional systems
analysts and programmers. The findings
could inform decisions relating to training,
hiring, and promoting of systems analysts
and software project managers in an
industrial setting.

8. CONCLUSION

Both hypotheses were supported by the
research findings. It is clear that students
who reported being better at programming
performed better as a group on the
evaluation than those who reported being
less skilled in programming. It is interesting
to note that students in general tended to be
modest in evaluating their programming
ability. It is also clear that those students
who attended the “integrated” course that
used code examples scored higher as a
group. This implies that students integrate
software engineering principles better when
the relationship between the results of their
designs are emphasized throughout the
course. We believe that these results
support widely used “folk pedagogies”
(Booth, 2001) that introduce students to
software engineering with a programming
course followed by a design course. Given
that program design has a huge impact on
robustness and maintainability, we do not
suggest however, that introductory
programming courses should ignore teaching
the basics of good design. Concepts such as
three-tier architecture, separation of
concerns, and iterative development are
basic ideas that students can readily
understand, yet provide a foundation of

c© 2004 EDSIG http://isedj.org/2/27/ May 3, 2004

ISEDJ 2 (27) Guthrie 10

good design practice right from the start.
This study suggests therefore that the
“chicken” should indeed come before the
egg, but with proper course content, the
chickens will be matured and ready to be
productive “egg-layers” in the follow-on
systems analysis and design courses.

9. REFERENCES

Booth, S. (2001). Learning Computer

Science and Engineering in Context.
Computer Science Education, 11(3),
169-188.

Fleury, A.E. (1993). Students' beliefs about

Pascal Programming. Journal of
Educational Computing Research, 9(3),
355-371.

Fowler, L., J. Armarego, and M. Allen

(2001). CASE Tools: Constructivism and
its Application to Learning and Usability
of Software Engineering Tools. Computer
Science Education, 11(3), 261-272.

Gal-Ezer, J. and A. Zeldes (2000). Teaching

Software Designing Skill. Computer
Science Education, 10(1), 25-38.

Gruender, C.D. (1996). Constructivism and

learning: A philosophical appraisal.
Educational Technology, 36, 21-29.

Larman, C. (2002). Applying UML and

Patterns (2nd ed.). Upper Saddle River:
Prentice-Hall.

Lebow, D. (1993). Constructivist values for

instructional systems design: Five
principles toward a new mindset.
Educational Technology Research and
Development, 41, 4-16.

Perkins, D.N. (1992). Smart schools: from

training memories to educating minds.
New York: Free Press.

Savery, J.R. and T.M. Duffy (1995). Problem

Based Learning: An Instructional Model
and Its Constructivist Framework.
Educational Technology, 35(5), 31-38.

Whiddett, R.J., B.X. Jackson, and J. Handy

(2000). Teaching Information Systems
Management Skills: Using Integrated

Projects and Case Studies. Computer
Science Education, 10(2), 165-177.

c© 2004 EDSIG http://isedj.org/2/27/ May 3, 2004

ISEDJ 2 (27) Guthrie 11

Randy Guthrie is an assistant professor in the
Computer Information Systems Department at
California State Polytechnic University at Pomona,
and ABD in Information Science at Claremont
Graduate University. His dissertation seeks to
validate a model that explains how the social
histories designed into software influence adopting
organizations.

c© 2004 EDSIG http://isedj.org/2/27/ May 3, 2004

