

Volume 9, No. 2
June 2011

ISSN: 1545-679X

Information Systems

Education Journal

In this issue:

4. Are Password Management Applications Viable? An Analysis of User Training and

Reactions
Mark Ciampa, Western Kentucky University

14 A ‘Rainmaker’ Process for Developing Internet-based Retail Businesses
Alan S. Abrahams, Virginia Tech

Tirna Singh, Virginia Tech

27 Texting and the Efficacy of Mnemonics: Is Too Much Texting Detrimental?

Randy Ryker, Nicholls State University

Chuck Viosca, Nicholls State University

Shari Lawrence, Nicholls State University

Betty Kleen, Nicholls State University

34 Cloud Computing in the Curricula of Schools of Computer Science and

Information Systems

James P. Lawler, Pace University

55 IS/IT Education vs. Business Education: The Plight of Social Collapse in

Technical Business Environments

Brian Hall, Champlain College

65 Incorporating Capstone Courses in Programs Based upon IS2010 Model

Curriculum

Ken Surendran, Southeast Missouri State University

Dana Schwieger, Southeast Missouri State University

75 Predicting Success in the Introduction to Computers Course: GPA vs.

Student’s Self-Efficacy Scores

Joseph T. Baxter, Dalton State College

Bruce Hungerford, Dalton State College

Marilyn M. Helms, Dalton State College

95 Impact of Pre-Grading / Resubmission of Projects on Test Grades in an

Introductory Computer Literacy Course

Thomas N. Janicki, University of North Carolina Wilmington

Judith Gebauer, University of North Carolina Wilmington

Ulku Yaylacicegi, University of North Carolina Wilmington

101 Design, The “Straw” Missing From the “Bricks” of IS Curricula

Leslie J. Waguespack, Bentley University

Information Systems Education Journal (ISEDJ) 9 (2)
 June 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 2

www.aitp-edsig.org /www.isedj.org

The Information Systems Education Journal (ISEDJ) is a double-blind peer-reviewed
academic journal published by EDSIG, the Education Special Interest Group of AITP, the
Association of Information Technology Professionals (Chicago, Illinois). Publishing frequency is
quarterly. The first year of publication is 2003.

ISEDJ is published online (http://isedjorg) in connection with ISECON, the Information Systems
Education Conference, which is also double-blind peer reviewed. Our sister publication, the
Proceedings of ISECON (http://isecon.org) features all papers, panels, workshops, and
presentations from the conference.

The journal acceptance review process involves a minimum of three double-blind peer reviews,
where both the reviewer is not aware of the identities of the authors and the authors are not
aware of the identities of the reviewers. The initial reviews happen before the conference. At
that point papers are divided into award papers (top 15%), other journal papers (top 30%),
unsettled papers, and non-journal papers. The unsettled papers are subjected to a second
round of blind peer review to establish whether they will be accepted to the journal or not. Those
papers that are deemed of sufficient quality are accepted for publication in the ISEDJ journal.
Currently the target acceptance rate for the journal is about 45%.

Information Systems Education Journal is pleased to be listed in the 1st Edition of Cabell's
Directory of Publishing Opportunities in Educational Technology and Library Science, in both
the electronic and printed editions. Questions should be addressed to the editor at

editor@isedj.org or the publisher at publisher@isedj.org.

2011 AITP Education Special Interest Group (EDSIG) Board of Directors

Alan Peslak

Penn State University

President 2011

Wendy Ceccucci

Quinnipiac University

Vice President

Tom Janicki

Univ of NC Wilmington

President 2009-2010

Scott Hunsinger
Appalachian State University

Membership Director

Michael Smith
High Point University

Secretary

Brenda McAleer
Univ of Maine Augusta

Treasurer

Michael Battig
Saint Michael’s College

Director

George Nezlek
Grand Valley State University

Director

Leslie J. Waguespack Jr
Bentley University

Director

Mary Lind
North Carolina A&T St Univ

Director

Li-Jen Shannon
Sam Houston State Univ

Director

S. E. Kruck
James Madison University

JISE Editor

 Kevin Jetton
Texas State University

FITE Liaison

Copyright © 2011 by the Education Special Interest Group (EDSIG) of the Association of Information Technology
Professionals (AITP). Permission to make digital or hard copies of all or part of this journal for personal or classroom
use is granted without fee provided that the copies are not made or distributed for profit or commercial use. All copies
must bear this notice and full citation. Permission from the Editor is required to post to servers, redistribute to lists, or
utilize in a for-profit or commercial use. Permission requests should be sent to Wendy Ceccucci, Editor,
editor@isedj.org.

http://www.cabells.com/
http://www.cabells.com/
mailto:editor@isedj.org
mailto:publisher@isedj.org
mailto:editor@isedj.org

Information Systems Education Journal (ISEDJ) 9 (2)
 June 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 3

www.aitp-edsig.org /www.isedj.org

Information Systems

Education Journal

Editors

Wendy Ceccucci

Senior Editor

Quinnipiac University

Thomas Janicki
Publisher

Univ NC Wilmington

Don Colton
Emeritus Editor

Brigham Young University
Hawaii

Nita Brooks

Associate Editor

Middle Tennessee
State University

George Nezlek
Associate Editor

Grand Valley
State University

Mike Smith
Associate Editor - Cases

High Point University

ISEDJ Editorial Board

Alan Abrahams
Virginia Tech

Mike Battig
Saint Michael’s College

Gerald DeHondt II
Grand Valley State University

Janet Helwig
Dominican University

Mark Jones
Lock Haven University

Cynthia Martincic
Saint Vincent College

Brenda McAleer
University of Maine at Augusta

Monica Parzinger
St. Mary’s University
San Antonio

Doncho Petkov
Eastern Connecticut State Univ.

Samuel Sambasivam
Azusa Pacific University

Mark Segall
Metropolitan State College of

Denver

Li-Jen Shannon
Sam Houston State University

Karthikeyan Umapathy
University of North Florida

Laurie Werner
Miami University

Bruce White
Quinnipiac University

Charles Woratschek
Robert Morris University.

Peter Y. Wu
Robert Morris University

Information Systems Education Journal (ISEDJ) 9 (2)
 June 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 101

www.aitp-edsig.org /www.isedj.org

Design, The “Straw” Missing

From the “Bricks” of IS Curricula

Leslie J. Waguespack
lwaguespack@bentley.edu

Computer Information Systems Department, Bentley University

Waltham, Massachusetts 02154-4705, USA

Abstract

As punishment in the biblical story of Moses the slaves were told they had to make bricks without
straw. This was impossible because bricks made without straw had the appearance of strength and
function but could not withstand the proof of actual use. The slaves' punishment was therefore not
only to make bricks, but also to find the straw on their own with which to make them. In this day and
age it would seem that many of our Information Systems curricula ask students to learn to make

systems without teaching them about design. We are good at teaching students how to make software
systems that do things but not so good at teaching students how one way of doing things in a system
design is better than another. In this essay I consider the role of teaching systems design in preparing
an IS professional and the forces that have come into play over the history of computing that have, in
many cases, frozen out the study of design from the IS curricula.

Keywords: design, IS discipline, IS curricula

1. INTRODUCTION

As computing education embarks on its eighth
decade of preparing the professionals who will
build information systems supporting every facet

of humankind’s culture and commerce, the
specialization of computing curricula has
subdivided and compartmentalized the
principles, science, and practice of computing
into five general categories: computer science,
computer engineering, software engineering,
information technology and information systems

(Shackelford, Cross, Davies, Impagliazzo,
Kamali, LeBlanc, Lunt, McGettrick, Sloan & Topi,
2005). Without question the breadth of all the

knowledge encompassing computing today is too
large to be addressed to any significant depth in
a computing student’s undergraduate education.
Reason and practicality dictate that the

knowledge of computing be subdivided (aka.
specialized) in practice-focused curricula. This
essay explores the proposition that one practice
essential to any form of computing, design, has
been sidelined (if not virtually forgotten) in

computing’s curricular subdivision. This paper
examines the disciplinary evolution of computing
and the most recently published guidelines for
computing curricula. I consider whether design

education is sufficiently represented in their
prescriptions and focus specifically on
information systems education.

2. THE EVOLUTION OF COMPUTING FROM
PROGRAMS TO SYSTEMS

In the early years of computing (1938 - 1958)
computer systems (analog computers

particularly) were capable of working on the
solution of only a single problem at a time. This

single-mindedness of function meant that
computers were indivisible resources that could
not be shared except through sequenced
allocation (Green, 2010). Digital computing
eventually revealed the opportunity to use the

natural differential between the processing
speeds of various computing components (i.e.
I/O vs. computation usually resulted in idle time
for the computation units) to multiplex tasks and

Information Systems Education Journal (ISEDJ) 9 (2)
 June 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 102

www.aitp-edsig.org /www.isedj.org

recover time otherwise lost waiting for slower
operations.

In that era the primary design challenge was
bridging the conceptual distance between human

requirements and computing functionality.
Success most often depended upon the ability of
designers to reshape their problems to
accommodate the computer’s capabilities.

The transition from running a single stream of
sequential "work" through a computing resource
into the coordination of multiple (seemingly)

concurrent streams of "work" more closely
approximated the real world of organizations
and life but also introduced the challenges of

workflow management (coordination,
prioritization, dependency, and planning). What
here-to-fore may have been challenges of

resource utilization optimization for individual
programs became optimization for application
systems.

Although the dramatic growth of computing
power and resources (e.g. virtual memory,
parallel processing, multiprogramming, and
multitasking: 1958-1975 (Blaauw & Brooks,

1997)) may have obviated detailed study of
operating systems principles for application
programmers, the same principles of problem
solving remain critical because they
(coordination, prioritization, dependency, and
planning) had become the critical resource

management issues at the service oriented

application level of systems!

3. THE WIDENING BREADTH OF TECHNICAL
INFORMATION IN COMPUTING CURRICULA

For the first generation of information system
builders in the digital age (1956 - 1968) the
patterns and recognition of software design

quality in programming were learned /
developed through countless repetitions of
programming exercises across three or more
programming languages (i.e. assembler,
FORTRAN, COBOL). This included problems from
the trivial (to learn syntax) to the more complex
approaching application system complexity.

The paucity of pattern enforcing mechanisms in
programming tools (languages, editors,
compilers, debuggers, etc.) required successful
developers to be vigilant as they wrote software:
crafting modularity, transparency, traceability,
and maintainability – the selfsame
characteristics that in concert condition a holistic

mindset on the design quality of systems. In
particular traceability testified to the conceptual

integrity of a design's pertinence as a “solution”
to the problem.

Underlying structural software concepts received
individual focus in coursework that isolated data

structures, control structures, communications,
module, and systems architecture (at various
levels) more or less independent of any
particular modeling or programming dialect.

Structured programming was the first
overarching model to organize basic design
principles of coding into a paradigm of do's and

don't 's that focused on achieving qualities of
clarity, reliability and transparency in code
(Dijkstra, 1968).

In these first couple decades of computing
removed from the research laboratories into the
university classroom, the breadth of concepts

and practice in computer science and computer
engineering did not yet outstretch the capacity
of an individual's awareness of issues and topics
across the entire field.

4. THE EXPANSION OF COMPUTING'S
APPLICATION SPACE FROM SCIENTIFIC TO

COMMERCIAL

In the advent of digital computing (1950-1965)
only a handful of organizations had access to
any form of problem solving using "mechanical
computation." Those organizations were

resource-privileged either because of their
governmental or financial power. As a result, the
professionals involved in learning and employing

these tools were recruited from the same ranks
as those who were sought for research in
mathematics, engineering and the sciences.
Academia's response to the resource
requirement for education of these professionals
followed the same pattern as that found in

mathematics, engineering and the sciences with
heavy doses of foundational coursework
including broad coverage of basic theory
followed by extensive review of the current
research in digital computation, electronic
circuitry, hardware and software architecture
(which usually meant reviewing the dozen or so

contemporarily predominant computer designs).

As it became commercially feasible to offer
computing systems within the financial means of
more and more commercial customers, the
demand for information systems development
exploded. Professionals were needed to develop
and manage computers in more far-flung

application domains (business, medicine, applied
engineering, etc.) in which computing’s primary

Information Systems Education Journal (ISEDJ) 9 (2)
 June 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 103

www.aitp-edsig.org /www.isedj.org

purpose was augmenting the existing culture of
systems and problem representation in a
domain. This prompted academic programs in
those domains to introduce application domain-

based computing education. Those programs
naturally treated computing as an addendum to
their "core" disciplinary foci. The subset of
computing knowledge that was incorporated
narrowed down to a treatment of application
development. In most cases these applications
were seen as generally isolated solutions to

individual and separate applications of problem
solving.

5. THE GROWTH OF FACADE-BASED

APPLICATION DEVELOPMENT
ENVIRONMENTS

Marked by a steady increase in connectivity and

the coming of the Internet over the last three
decades, the breadth of applying computing to
more and more commercial opportunities for
problem solving has swelled. Tools for
application development have evolved to
insulate developers more and more from the
details and intricacies of the computing

platforms and environment. At the same time
application development has expanded to an
ever-broadening population of "developers" less
and less versed in the core fundamentals of
computing theory and practice. Indeed business
computing as confined to the collection,

organization and reporting of data has evolved

into more of a clerical activity as opposed to one
of problem solving. Quite reasonably, as a
proportion of ongoing business computing
activities, "data processing" predominates.

Because of this dominance, technical education
in computing activities has migrated from

departments of mathematics and engineering to
departments applying computing to their
domain-based interests. And to the extent the
academic programs focus on teaching best
practice using applications of known solutions to
domain-based problems, they serve their
students well. But, the ever-increasing

interconnectedness of information and processes

has levied a new layer of complexity upon
collaboration and adaptability. More than ever
computing capabilities are changing “the existing
culture of systems and problem representation
in a domain.” The challenges arise at the frontier
of known solutions where either the reshaping of

the domain-based problem or the creation of
innovative applications of computing require
more than the mastery of off-the-shelf solutions
– they require creative design. They require

systems that integrate the people, policies,
information, hardware, software, networks, and
quality management in the design of complete,
holistic solutions. They require systems that

accomplish a conceptual integrity and
enlightened design (Brooks, 2010).

6. THE CONFINING PEDAGOGICAL
RESOURCE - CURRICULAR TURF

When we consider domain-based education
(business, medicine, applied engineering, etc.)
combined with the fundamentals of computing

and systems, the inventory of prospective,
relevant coursework quickly exceeds the course
credit hour “budget” of any undergraduate

curriculum. Under this pressure the balance of
emphasis and the share of the curricular
coursework naturally tilts in the favor of the

domain-based disciplines and away from the
depth of fundamental computing theory and
practice needed to fuel innovation and
enlightened design. This has clearly been the
case in computing programs contained in
schools of business naturally preoccupied with
certifying their “business” credentials [AACSB

2010, EQUIS 2010]. The footprint of coursework
assigned to a business computing major is
seldom more than 24 course credit hours
dedicated to computing.

7. WHAT DESIGN IS ABOUT

The New Oxford American dictionary defines
design (noun) as a plan representing the form

and function of something before it is built or
made. Design engenders the purpose, planning
or intention that exists or is thought to exist
behind an action, fact or material object.

Over the last 50 years Fred Brooks has been one
of the most ardent and influential advocates of

design as essential to the pursuit of information
system quality.

“Whereas the difference between poor
conceptual designs and good ones may lie in the
soundness of design-method, the difference
between good designs and great ones surely

does not. Great designs come from great

designers. Software construction is a creative
process. Sound methodology can empower and
liberate the creative mind; it cannot inflame or
inspire the drudge.

The differences are not minor – they are rather
like the differences between Salieri and Mozart.
Study after study shows that the very best

designers produce structures that are faster,

Information Systems Education Journal (ISEDJ) 9 (2)
 June 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 104

www.aitp-edsig.org /www.isedj.org

smaller, simpler, cleaner and produced with less
effort. [...] The differences between the great
and the average approach an order of
magnitude.” (Brooks, 1995)

In his most recent reflection on the professional
practice of creating information systems that
support organizational goals he comments on
the central role of design in this way.

“The essentials of [design] are plan, in the mind,
and later execution. Thus a design (noun) is a
created object, preliminary to and related to the

thing being designed, but distinct from it.”

“A book, in this conception, or a computer, or a
program, comes into existence first as an ideal

construct, built outside time and space, but
complete in essence in the mind of the author. It
is implemented in time and space, by pen, ink,

and paper; or by silicon and metal. The creation
is complete when someone reads the book, uses
the computer, or runs the program, thereby
interacting with the mind of the maker.”
(Brooks, 2010)

Brooks clearly distinguishes the act of system
design from the implementation. The cycle of

system creation differentiates design,
implementation and use, but it does not
segregate them! Indeed their interdependency is
core to understanding each aspect as declared in
the agile development concept. (Beck, 2010)

Although distinct, these elements of system
creation fuse as they conceive, develop and

judge the design qualities that mark the degree
of satisfaction (success) the stakeholders
experience during a system’s lifetime.

This distinction between design and
implementation has faded from the structure of
computing education. To ignore the conceptual

distinction between the design and an
implementation is tantamount to accepting any
“solution” without even considering whether (as
Brooks declares compared to the “average”)
there is a solution out there that is an order of
magnitude “faster, smaller, simpler, cleaner and
produced with less effort.”

8. CURRICULUM GUIDELINES – IN SEARCH
OF DESIGN

Finding the latest focus on design in computing
curricula starts with The Overview Volume on
Undergraduate Degree Programs in Computing.
The CC2005 report is the de facto definition of
subdivisions of computing education (see Figure

1 in the appendix).

As the report declares “We have created this
report to explain the character of the various
undergraduate degree programs in computing
and to help you determine which of the

programs are most suited to particular goals and
circumstances.” (Shackelford et. al., 2005)

The CC2005 report explains the general
evolution of computing curricula depicted in
Figure 2 (see the appendix).

Among the 39 Knowledge Areas of computing
identified in CC2005 only 7 reference design as a

specific professional competency in any form.
Among those the area definitions in the glossary
do not distinguish between design and

implement. To some extent this is not surprising
since the CC2005 effort was primarily conceived
to contrast the foci of the 5 computing

subdivisions rather than explain them in detail.
To get detail we must explore each of the five
subdivision curriculum guideline documents: CE,
CS, SE, IT and IS. (Soldan, Hughes,
Impagliazzo, McGettrick, Nelson, Srimani &
Theys 2004; Cassel, Clements, Davies, Guzdial,
McCauley, McGettrick, Sloan, Snyder, Tymann &

Weide, 2008; Diaz-Herrara & Hilburn, 2004;
Lunt, Ekstrom, Gorka, Hislop, Kamali, Lawson,
LeBlanc, Miller & Reichgelt, 2008; Topi,
Valacich, Wright, Kaiser, Nunamaker, Sipior & de
Vreede, 2010)

All 5 curriculum guideline documents liberally

refer to design in various applications of

technology to systems development. However,
only the software engineering curriculum
guidelines address specific aspects of design
quality or design principles in its knowledge area
content (Diaz-Herrara et al, 2004). Indeed only
the software engineering guidelines imply to any

degree that design is a separate conceptual or
practical activity distinct from implementation.
There are no learning unit designations in the IS
2010 curriculum guidelines addressing aspects
of design distinct from a technology.

This is the case because current practice in IS
curricula has assumed that teaching any form of

implementation suffices for teaching design.

When implementation was taught across several
courses and languages in earlier days of
computing curricula, extensive implementation
may indeed have sufficed for design-focused
pedagogy. In an IS curriculum today, when it is
almost impossible to find room for more than

two or three courses in any systems
development technology or more than a single
course in any particular technology, teaching
implementation cannot suffice for teaching

Information Systems Education Journal (ISEDJ) 9 (2)
 June 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 105

www.aitp-edsig.org /www.isedj.org

design. If these current challenges weren’t
severe enough, IS 2010 no longer lists
implementation (application development) as a
core requirement. With that “juridical”

justification removed IS and CIS programs may
find it even harder to maintain any semblance of
practical system life cycle pedagogy.

9. CONSEQUENCES OF TEACHING “BRICKS
WITHOUT STRAW”

De-emphasizing design in IS curricula results in
the narrowing of the learning experience toward

talking about systems rather than forming
systems. Here the term “forming systems” is not
limited to “writing program code,” but includes

developing requirements, modeling information,
processes and transactions, as well as building
application software. Design permeates the

forming of systems – even if only to describe
them (Waguespack 2010). Design is the
fundamental problem-solving aspect of systems.
Design is the foundation and justification of
systems and is essential to understanding them.

The most prominent consequence of de-
emphasizing design in IS curricula is the effect it

has on IS graduates’ employment opportunities.
Graduates of an “about-IS” focused academic
program are increasingly challenged to justify to
themselves and to employers their value over
graduates in the business domain without an IS

degree. It is increasingly difficult for an
employer to distinguish the hiring advantage of

a business student with an IS major over that of
an IS minor or general business graduate.
Where IS programs share a college with
accountancy, marketing, management, finance,
etc., these programs have successfully co-opted
interest in IS to their programs by offering

courses focused exclusively on the use of
discipline-based, extant application systems -
avoiding systems development completely. As a
result, unable to clearly promote the career
advantages of an IS degree over “general
business,” IS programs find it increasingly
difficult to recruit IS majors.

10. WHAT THE FUTURE MAY HOLD

Whether Information Systems is or is not a
discipline has long been the subject of debate in
the field of computing. This can be evidenced by
the search for labels in the field: DP, IS, MIS,
CIS, and IT. Clearly IS first emerged at the
intersection of computer science, business,

management and (many would say)
engineering. Over the past two or three decades

many IS programs have devolved by de-
emphasizing the construction aspects of their
curricula; effectively jettisoning merged content
from computer science and engineering in the

process.

This essay contends that the primary loss in this
devolution has not been “coding skill” in some
particular programming language. The loss is the
aspect of design as a holistic mindset and the
tools it provides in shaping IS problem
representation and problem solving – applying

computing in the information and organizational
contexts (Denning 2004) and reinforcing
“systems think” (Waguespack 2010). This loss
negatively impacts the students’ ability to

understand requirements and formulate models
of software, models of business, and models of

business process. In IS, design is the act of
fusing technological opportunity with business
opportunity often reshaping or reinventing both.
Absent design, computing assumes the status of
a contraption that one might take off the shelf
as-is, surrendering the solution quality to the
purposes of others – basically surrendering

innovation to the appliance manufacturers. If the
trajectory of this evolution continues I believe
the debate will be over and IS as a discipline will
indeed be no more.

The challenge is no simple one. If Information
Systems is to maintain its valid role as the

bridge between computing and the effective /

efficient application of technology to information
and process problems, IS curriculum architects
must find a way to re-energize the teaching of
design in their programs. In many institutions
business programs are limited to prerequisite
chains no longer than two courses. That makes

it unlikely that renewed emphasis can be gained
simply by adding courses to existing program
structures. Some renewed energy may be
gained through creative pedagogy by
introducing systems building activities into more
theoretical IS study (e.g. computer organization,
networking, project management or policy).

Such a creative reorganization of learning
activities will surely require extensive

investment in textbook and laboratory
redirection. In some cases this will require the
reversal of the IS-diffusion among business
departments. In other cases it may require the
inventive re-structuring of curricula that bridge

departments of IS and computer science to take
broader advantage of arts and sciences elective
opportunities across the university.

Information Systems Education Journal (ISEDJ) 9 (2)
 June 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 106

www.aitp-edsig.org /www.isedj.org

In any case, the time is relatively short for
reversing the decline of IS’s relevance as an
academic discipline. Remarkably, as few as the
number of graduates from most IS programs

there are, they are highly sought-after, and the
employment market for them has weathered
major storms of off-shoring and economic
downturn. These are indications that society
(particularly business) still needs practically
educated professionals who understand both the
application domain and computing, and combine

that knowledge and skills to deliver tomorrow’s
quality, innovative information systems. How will
IS programs and higher education respond?

11. ACKNOWLEDGEMENTS

Thanks to helpful referees. Special thanks are
due my colleagues in Computer Information

Systems at Bentley University for their insightful
discussions and comments on these ideas.

12. REFERENCES

AACSB (2010). Eligibility Procedures and
Accreditation Standard for Business
Accreditation. Retrieved July 16, 2010 from
http://www.aacsb.edu/accreditation/AAACSB-

STANDARDS-2010.pdf

Beck K., Beedle M., van Bennekum A., Cockburn
A., Cunningham W., Fowler M., Grenning J.,

Highsmith J., Hunt A., Jeffries R., Kern J.,
Marick B., Martin R.C., Mellor S., Schwaber K.,
Sutherland J., & Thomas D. (2010). Manifesto
for Agile Software Development. Retrieved

July 12, 2010 from agilemanifesto.org

Blaauw, G.A., & Brooks, F.P. (1997). Computer
Architecture: Concepts and Evolution.
Addison-Wesley, Reading, Massachusetts.

Brooks, Frederick P. (1995). The Mythical Man-
Month: Essays on Software Engineering (2ed).

Addison-Wesley, Boston, MA.

Brooks, Frederick P. (2010). The Design of
Design: Essays from as Computer Scientist.
Addison-Wesley, Pearson Education, Inc.,
Boston, MA.

Cassel L., Clements A., Davies G., Guzdial M.,
McCauley R., McGettrick A., Sloan B., Snyder

L, Tymann P., & Weide B.W., (2008).
Computer Science Curriculum 2008 An Interim
Revision of CS2001. Association of Computing
Machinery (ACM), & IEEE Computing Society
(IEEE-CS).

Dijkstra, E. (1968). GOTO Statement Considered
Harmful. Communications of the ACM, 11(3),
147-148.

Diaz-Herrara, J.L., & Hilburn, Thomas B. (eds.)

(2004). Software Engineering 2004:
Curriculum Guidelines for Undergraduate
Degree Programs in Software Engineering,
IEEE Computing Society (IEEE-CS),
Association of Computing Machinery (ACM).

Denning, P. J. (2004). The Great Principles of
Computing, Ubiquity, 4(48), 4–10.

EQUIS (2010). EQUIS Standards and Criteria.
Retrieved July 16, 2010 from
http://www.efmd.org/attachments/tmpl_1_art

_041027xvpa_att_080404qois.pdf

Green, T. (2010). Bright Boys. A.K. Peters, Ltd.,
Natick, Massachusetts.

Lunt, B.M., Ekstrom, J.J., Gorka, S., Hislop, G.,
Kamali, R., Lawson, E., LeBlanc, R., Miller, J.,
& Reichgelt, H. (eds.) (2008). Information
Technology 2008: Curriculum Guidelines for
Undergraduate Degree Programs in
Information Technology, Association of
Computing Machinery (ACM), IEEE Computing

Society (IEEE-CS).

Shackelford, R., Cross, J.H., Davies, G.,
Impagliazzo, J., Kamali, R., LeBlanc, R., Lunt,
B., McGettrick, A., Sloan, R., & Topi, H.,

(2005). Computing Curricula 2005: The
Overview Report, Association for Computing
Machiner (ACM), The Association of

Information Systems (AIS), The Computer
Society (IEEE-CS).

Soldan, D., Hughes, J.L.A., Impagliazzo, J.,
McGettrick, A., Nelson, V.P., Srimani, K., &
Theys, M.D. (eds.) (2004). Computer
Engineering 2004: Curriculum Guidelines for

Undergraduate Degree programs in Computer
Engineering, IEEE Computer Society (IEEE-
CS), Association for Computing Machinery
(ACM).

Topi, H., Valacich, J.S., Wright, R.T., Kaiser,
K.M., Nunamaker, J.F. Jr., Sipior, J.C., & de

Vreede, G.J. (eds.) (2010). IS2010:

Curriculum Guidelines for Undergraduate
Degree Programs in Information Systems,
Association for Computing Machinery (ACM),
Association for Information Systems (AIS).

Waguespack, L. J. (2010). Thriving Systems
Theory and Metaphor-Driven Modeling.
Springer, London, U.K.

http://www.aacsb.edu/accreditation/AAACSB-STANDARDS-2010.pdf
http://www.aacsb.edu/accreditation/AAACSB-STANDARDS-2010.pdf
http://www.efmd.org/attachments/tmpl_1_art_041027xvpa_att_080404qois.pdf
http://www.efmd.org/attachments/tmpl_1_art_041027xvpa_att_080404qois.pdf

Information Systems Education Journal (ISEDJ) 9 (2)
 June 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 107

www.aitp-edsig.org /www.isedj.org

Editor’s Note:

This paper was selected for inclusion in the journal as an ISECON 2010 Meritorious Paper. The
acceptance rate is typically 15% for this category of paper based on blind reviews from six or more
peers including three or more former best papers authors who did not submit a paper in 2010.

Information Systems Education Journal (ISEDJ) 9 (2)
 June 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 108

www.aitp-edsig.org /www.isedj.org

Appendix

Figure 1 - Computing Curricula Guidelines

Figure 2 - The Outward Appearance of Computing Curricula Evolution

!

CC2001

(CS2001)

Computer

Science

Curriculum

Volume

IS2002

Information

Systems

Curriculum

Volume

SE2004

Software

Engineering

Curriculum

Volume

CE2004

Computer

Engineering

Curriculum

Volume

IT2006

Information

Technology

Curriculum

Volume

Other

curriculum

volumes as

needed for

emerging

disciplines

CC2005

The Overview

Volume

on

Undergraduate

Degree

Programs

in Computing

!

EE+

CE
CS IS

EE CE CS SE IT IS

Pre-1990s:

Post-1990s:

HARDWARE SOFTWARE BUSINESS

HARDWARE SOFTWARE ORGANIZATIONAL
NEEDS

