

Volume 9, No. 5
October 2011

ISSN: 1545-679X

Information Systems

Education Journal

In this issue:

4 Defining the Content of the Undergraduate Systems Analysis and Design Course as

Measured by a Survey of Instructors

Timothy J. Burns, Ramapo College of New Jersey

18 A Relational Algebra Query Language For Programming Relational Databases

Kirby McMaster, Weber State University

Samuel Sambasivam, Azusa Pacific University
Nicole Anderson, Winona State University

27 The Greening of the Information Systems Curriculum
Patricia Sendall, Merrimack College
Li-Jen Shannon, Sam Houston State College
Alan R Peslak, Penn State University

Bruce Saulnier, Quinnipiac University

46 Determining the Most Suitable E-Learning Delivery Mode for TUT Students
Solomon Adeyemi Odunaike Tshwane University of Technology
Daniel Chuene, Tshwane University of Technology

61 Beyond Introductory Programming: Success Factors for Advanced Programming
Arthur Hoskey, Farmingdale State College
Paula San Millan Maurino, Farmingdale State College

71 Systems in the Foundations of Information Systems Course to Retain Students and
to Support the IS 2010 Model Curricula
Gayla Jo Slauson, Colorado Mesa University

Donald Carpenter, Colorado Mesa University
Johnny Snyder, Colorado Mesa University

77 Culturally Sensitive IS Teaching: Lessons Learned to Manage Motivation Issues
Wenshin Chen, Abu Dhabi University

86 Establishing and Applying Criteria for Evaluating the Ease of Use of Dynamic

Platforms for Teaching Web Application Development
Johnson Dehinbo, Tshwane University of Technology

97 Integrating SAP to Information Systems Curriculum: Design and Delivery

Ming Wang, California State University

105 A Validation Study of Student Differentiation Between Computing Disciplines
Michael Battig, Saint Michael’s College
Muhammad Shariq, American University of Afghanistan

Information Systems Education Journal (ISEDJ) 9 (5)
 October 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 2

www.aitp-edsig.org /www.isedj.org

The Information Systems Education Journal (ISEDJ) is a double-blind peer-reviewed
academic journal published by EDSIG, the Education Special Interest Group of AITP, the
Association of Information Technology Professionals (Chicago, Illinois). Publishing frequency is
quarterly. The first year of publication is 2003.

ISEDJ is published online (http://isedjorg) in connection with ISECON, the Information Systems
Education Conference, which is also double-blind peer reviewed. Our sister publication, the
Proceedings of ISECON (http://isecon.org) features all papers, panels, workshops, and
presentations from the conference.

The journal acceptance review process involves a minimum of three double-blind peer reviews,
where both the reviewer is not aware of the identities of the authors and the authors are not
aware of the identities of the reviewers. The initial reviews happen before the conference. At
that point papers are divided into award papers (top 15%), other journal papers (top 30%),
unsettled papers, and non-journal papers. The unsettled papers are subjected to a second
round of blind peer review to establish whether they will be accepted to the journal or not. Those
papers that are deemed of sufficient quality are accepted for publication in the ISEDJ journal.
Currently the target acceptance rate for the journal is about 45%.

Information Systems Education Journal is pleased to be listed in the 1st Edition of Cabell's
Directory of Publishing Opportunities in Educational Technology and Library Science, in both
the electronic and printed editions. Questions should be addressed to the editor at

editor@isedj.org or the publisher at publisher@isedj.org.

2011 AITP Education Special Interest Group (EDSIG) Board of Directors

Alan Peslak

Penn State University

President 2011

Wendy Ceccucci

Quinnipiac University

Vice President

Tom Janicki

Univ of NC Wilmington

President 2009-2010

Scott Hunsinger
Appalachian State University

Membership Director

Michael Smith
High Point University

Secretary

Brenda McAleer
Univ of Maine Augusta

Treasurer

Michael Battig
Saint Michael’s College

Director

George Nezlek
Grand Valley State University

Director

Leslie J. Waguespack Jr
Bentley University

Director

Mary Lind
North Carolina A&T St Univ

Director

Li-Jen Shannon
Sam Houston State Univ

Director

S. E. Kruck
James Madison University

JISE Editor

 Kevin Jetton

Texas State University
FITE Liaison

Copyright © 2011 by the Education Special Interest Group (EDSIG) of the Association of Information Technology
Professionals (AITP). Permission to make digital or hard copies of all or part of this journal for personal or classroom
use is granted without fee provided that the copies are not made or distributed for profit or commercial use. All copies
must bear this notice and full citation. Permission from the Editor is required to post to servers, redistribute to lists, or
utilize in a for-profit or commercial use. Permission requests should be sent to Wendy Ceccucci, Editor,
editor@isedj.org.

http://www.cabells.com/
http://www.cabells.com/
mailto:editor@isedj.org
mailto:publisher@isedj.org
mailto:editor@isedj.org

Information Systems Education Journal (ISEDJ) 9 (5)
 October 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 3

www.aitp-edsig.org /www.isedj.org

Information Systems

Education Journal

Editors

Wendy Ceccucci

Senior Editor

Quinnipiac University

Thomas Janicki
Publisher

Univ NC Wilmington

Don Colton
Emeritus Editor

Brigham Young University
Hawaii

Nita Brooks

Associate Editor

Middle Tennessee
State University

Mike Smith
Associate Editor - Cases

High Point University

ISEDJ Editorial Board

Alan Abrahams
Virginia Tech

Mike Battig
Saint Michael’s College

Gerald DeHondt II
Grand Valley State University

Janet Helwig
Dominican University

Mark Jones
Lock Haven University

Cynthia Martincic
Saint Vincent College

Brenda McAleer
University of Maine at Augusta

Monica Parzinger
St. Mary’s University
San Antonio

Doncho Petkov
Eastern Connecticut State Univ.

Samuel Sambasivam
Azusa Pacific University

Mark Segall
Metropolitan State College of

Denver

Li-Jen Shannon
Sam Houston State University

Karthikeyan Umapathy
University of North Florida

Laurie Werner
Miami University

Bruce White
Quinnipiac University

Charles Woratschek
Robert Morris University.

Peter Y. Wu
Robert Morris University

Information Systems Education Journal (ISEDJ) 9 (5)
 October 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 18

www.aitp-edsig.org /www.isedj.org

A Relational Algebra Query Language
For Programming Relational Databases

Kirby McMaster

kmcmaster@weber.edu
CS Dept., Weber State University

Ogden, Utah 84408 USA

Samuel Sambasivam
ssambasivam@apu.edu

CS Dept., Azusa Pacific University

Azusa, California 91702 USA

Nicole Anderson
nanderson@winona.edu

CS Dept., Winona State University
Winona, Minnesota 55987 USA

Abstract

In this paper, we describe a Relational Algebra Query Language (RAQL) and Relational Algebra Query

(RAQ) software product we have developed that allows database instructors to teach relational algebra
through programming. Instead of defining query operations using mathematical notation (the
approach commonly taken in database textbooks), students write RAQL query programs as sequences
of relational algebra function calls. The RAQ software allows RAQL programs to be run interactively, so
that students can view the results of RA operations. Thus, students can learn relational algebra in a
manner similar to learning SQL—by writing code and watching it run.

Keywords: database, query, relational algebra, programming, SQL

1. INTRODUCTION

Most commercial database systems are based
on the relational data model. Recent editions of
database textbooks focus primarily on the

relational model. In this dual context, the
relational model for data should be considered
the most important concept in an introductory
database course.

The heart of the relational model is a set of
objects called relations or tables, plus a set of

operations on these objects (Codd, 1972).

Coverage of the relational model in database
courses includes the structure of tables,

integrity constraints, links between tables, and
data manipulation operations (data entry and

queries).

Classroom discussion of queries and query
languages generally leads to a detailed
presentation of SQL. Relational algebra (RA) as
a query language receives less attention. In a
survey of database educators, Robbert and

Information Systems Education Journal (ISEDJ) 9 (5)
 October 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 19

www.aitp-edsig.org /www.isedj.org

Ricardo (2003) found that only 70% included
RA in their courses, compared to 92% for SQL.

Database textbooks provide substantially more
material on SQL than on RA. An extreme case is

the textbook by Hoffer, et al (2008), which
provides two full chapters on SQL but does not
mention RA.

Why Teach Relational Algebra?

There is almost universal agreement that SQL is
an essential component of an introductory
database course. But should we also teach

relational algebra? There are several good
reasons for doing so.

1. The main reason for teaching RA is to
help students better understand the relational
model. At the conceptual level, the relational
model provides a flexible, adaptable way to

query a database. The organization of data into
tables, together with RA operations, provides
the foundation for this flexibility.

Relational algebra is a query language, not a
database design tool. However, an
understanding of how RA operations can be
performed on tables to extract information

should help support database analysis and
design decisions.

2. Knowledge of RA facilitates teaching
and learning SQL as a query language. The

basic syntax of the SQL SELECT statement
provides an integrated framework for combining
RA operations to express a query.

3. An understanding of RA can also be
used to improve query performance. The query-
processing component of a DBMS engine
translates SQL code into a query plan that
includes RA operations. The DBMS query
optimizer, together with the database

administer, can speed up query execution by
reducing the processing time of the RA
operations.

How to Teach Relational Algebra?

If an instructor decides to include relational

algebra as a topic in a database course, a
follow-up question is how to present this topic

to students? RA coverage in leading database
textbooks often takes a mathematical
approach. For example, the texts by Connolly
and Begg (2009), Elmasri and Navathe (2006),
and Silberschatz, et al (2006) present RA
concepts using mathematical notation. There
are several problems with this form of

representation.

Many database students are not comfortable
with mathematical notation, such as the use of
Greek letters (e.g.  and ) in a new context.

The mathematical approach often mixes infix
notation (operator name is placed between two
operands; e.g. table1 union table2) and

functional notation (operator name is placed
before the operands; e.g. project table3 cols)
when performing multiple RA operations within
a single expression. This makes the expressions
difficult to interpret, and it disguises the
procedural nature of RA.

More importantly, students cannot execute
query programs written in the mathematical

notation. There is no easy way to verify that the
mathematical description of a query is correct.

The mathematical approach contrasts with how
programming courses are taught. In a
programming course, an important part of

learning occurs when students write instructions
for the computer and watch their code run.
Errors in program execution provide feedback,
which reduces the gap between a student's
perception of the problem and how the
computer interprets the proposed solution.

To demonstrate how computer implementations

differ from mathematical models, students need
software to experiment with. Students learn
mathematical and computational concepts more

effectively when they can work with actual
computer representations. As with other
programming languages, this principle applies

when we teach students how to query using
relational algebra.

All major relational database products offer SQL
as the primary query language. On the other
hand, very few computer environments are
available for developing and running RA
programs. One database system to offer RA as

a query language is LEAP (Leyton, 2010). The
Rel DBMS (Voorhis, 2010) uses a form of RA
called Tutorial D (Date and Darwen, 2007). A
third choice is WinRDBI (Dietrich, 2001), which
supports queries using RA and other query

languages.

Each of the above systems enables RA queries

within a specific database system. None allow
you to use RA to query desktop databases. In
this paper, we introduce a Relational Algebra
Query Language (RAQL) and a custom
Relational Algebra Query (RAQ) software
product that can be used to query relational

databases.

Information Systems Education Journal (ISEDJ) 9 (5)
 October 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 20

www.aitp-edsig.org /www.isedj.org

We first present a function-based syntax for
writing RAQL query programs as sequences of
RA operations. We outline the main features of
the RAQ software. Next, we demonstrate how

to use the software to execute RAQL programs.
Finally, we give examples of RA concepts that
can be taught using this approach.

2. RELATIONAL ALGEBRA PROGRAMMING

A RAQL query program consists of a set of
statements that specify operations to perform
on database tables. The statements are

executed in a particular sequence to yield a
result table that satisfies a query. Each

statement might consist of a single relational
algebra operation, or several operations can be
combined into one "algebraic" expression.
Rather than use complex expressions in query

programs, we prefer to have each line of code
perform a single RA operation. Our coding style
reflects 2GL (assembly language) thinking more
than 3GL thinking (e.g. Fortran, C).

We provide a library function for each RA
operation. A RAQL program is written as a
sequence of RA function calls. Each function

has one or two input parameters that are
tables, plus other input parameters as
necessary. The output of each function is
another table. Using functions to implement RA
operations provides database students with a

comfortable programming environment for
creating RAQL query programs.

Functions are provided for the following
relational algebra operations:

Table 1: Relational Algebra Functions

Operation Function

selection TSelect(Table1,RowCondition)

projection TProject(Table1,ColumnList)

join TJoin(Table1,Table2,JoinCondition)

union TUnion(Table1,Table2)

intersection TIntersect(Table1,Table2)

difference TMinus(Table1,Table2)

product TProduct(Table1,Table2)

division TDivide(Table1,Table2)

rename TRename(Table1,OldColumnName,
 NewColumnName)

To illustrate programming using RA functions,

we require a sample database. The structure of

a simple inventory database is described in the
next section.

Relational Database Example

Suppose an INVENTORY database for a
manufacturing environment consists of two
tables, STOCK and STKTYPE. The diagram in
Figure 1 describes the relational model for this
database.

This data model assumes that inventory items
are divided into categories, or types. Attributes

that apply to individual items are recorded in
the STOCK table. Attributes that apply to all
items of the same type are included in the

STKTYPE table. The two tables are linked by a
common type code (SType and TType).

Figure 1: Inventory Database

Primary keys are shown in bold

In this basic system, when the quantity-on-
hand for an item drops below its reorder point,
a production run of a predetermined lot-size is
scheduled on a specific production line. It is

assumed that reorder point, lot-size, and
production line depend on the stock type rather
than on the individual item. Whenever a
production run is scheduled, the OnOrder field
for the item is set to 'Y'. This field is reset to 'N'
after the order is filled.

RA Query1 Program

Consider the following query for the INVENTORY
database.

Query1: List the stock number, name, and
quantity-on-hand for all items that are
manufactured on production line 3.

A RAQL program for this query takes the form

of a sequence of Table 1 function calls. Each
function receives one or two tables as
arguments and returns a temporary table. The
temporary table can be used in later RA

Information Systems Education Journal (ISEDJ) 9 (5)
 October 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 21

www.aitp-edsig.org /www.isedj.org

operations. Sample code for this query is shown
below:

-- RA Query1: Inventory Query – Line 3
T1 = TJoin('STOCK', 'STKTYPE', "SType=TType")
T2 = TSelect(T1, "ProdLine=3")
T3 = TProject(T2, "StkNo,StkName,QtyOnHand")

An explanation of each line of code for this
program follows:

Line 1: This is a comment (--)

Line 2: The STOCK and STKTYPE tables are

joined. The join condition states that the SType
field in the STOCK table must match the TType
field in the STKTYPE table. Actual table names

are placed in matching single (or double)
quotes, since they are fixed string values. The
join condition is also placed in quotes. The
output of the TJoin function is a cursor (a

temporary table in memory). The cursor name
is randomly generated and is assigned to
variable T1. The name of the cursor is unknown
to the programmer, but the cursor can be
referred to in later program statements using
the variable name.

Line 3: Rows of cursor T1 are then selected if
they satisfy the condition that the ProdLine
(production line) field in T1 equals 3. Quotes
are not needed for the number 3. If quotes are
needed inside a row condition, then single and

double quotes should be nested in pairs (e.g.
"OnOrder='N'"). The output cursor name is

assigned to variable T2. The T1 argument is not
placed in quotes, since T1 is a variable.

Line 4: The three columns of cursor T2 specified
in the column list are projected as cursor T3,
which is the final result table for the query.

3. RAQ COMPUTER SOFTWARE

The RAQ software allows us to execute queries

written in the format of Query1. Our
explanation of how to use RAQ to perform
queries is organized according to the controls
(textboxes and command buttons) on the RAQ
main screen (see Figure 2).

1. Database File textbox: Choose a

database file. The database must be in a
Microsoft Access MDB file. The file can be
selected with the file-chooser dialog box, which
includes the ability to search in subdirectories.

No other actions can be performed in the RAQ
software until a valid database file is opened.
Once a database is open, it cannot be changed

without exiting and then rerunning the RAQ
software.

2. Query Program textbox: Choose a RAQL
query program. The program must be in a text

file having a TXT extension. A new query
program can be selected at any time during the
execution of the RAQ software, but the actions
that follow must be repeated.

3. Display button: Display the RAQL
program code in a window. This command can
be selected whenever the Display button is

enabled. Press the Escape key to close the
window. The display window is read-only. Any
changes or corrections to the RAQL program

must be made in a separate text editor.

Figure 2: RAQ Program Main Screen

4. Load button: Before a RAQL program

can be run, it must be loaded. This action can
be repeated when you want to restart the
program from the beginning.

5. Step button: Each click of this button

executes one RAQL instruction. This will

normally be a single relational algebra
operation. Comments in the program code are
skipped. For each successful RA operation, the

resulting query output cursor is shown on the
screen. Hit the escape key to close this view.

If an error occurs while trying to execute an
instruction, an error message is displayed in the
top right-hand corner of the screen. The error
message shows the code for the line that was

Information Systems Education Journal (ISEDJ) 9 (5)
 October 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 22

www.aitp-edsig.org /www.isedj.org

just attempted. Clicking the Display button
allows the user to see the error in the context
of the full RAQL program.

6. Save button: When an operation has

completed, the current output cursor can be
saved to disk. The format of the saved file is an
Excel XLS file. The name of the output file is the
name of the RAQL program file, followed by the
step number. The contents of the XLS file can
be easily transferred to a word processing
document or other data file.

7. Exit button: Click this button to exit the
program. You will be prompted to confirm this
request before the program ends.

The availability of most RAQ menu choices
depends on which actions have already
occurred during program execution. Textboxes

and command buttons are disabled when their
selection would be inappropriate. For example,
a result table cannot be saved if the current
command fails to execute correctly.

Running the RA Query1 Program

The previous discussion of RAQ controls and
features was fairly general. To provide a more

concrete demonstration, we list below one
possible sequence of RAQ actions that could be
taken to execute the Query1 program.

1. Load the INVENTORY database file. Sample

data for this database is listed in Appendix A.

2. Load the text file that contains Query1.
Assume this file is named RAQuery1.txt.

3. Click the Display button to view the
query program code (optional).

4. Click the Load button to initialize the
program.

5. Click the Step button. The comment line
will be skipped, and the TJoin operation will be

performed. The joined cursor T1 will appear in a
window.

6. Click the Step button again, and the
TSelect operation will produce cursor T2.

7. Click Step a third time, and TProject will
produce and display cursor T3. The final result
for Query1 is shown in Figure 3.

8. To save a result cursor, click the Save
button after closing the window showing the
cursor. If the final result in this example is
saved, the output file name will be RAQuery1-
3.xls.

Figure 3: RA Query1 Final Result

9. Click Exit when you are finished; then
confirm when prompted. If you prefer, you can
Load and rerun the same RAQL program, or

choose a new query program.

Appendix B contains a sample Relational

Algebra Project to give students experience
writing and running RAQL programs.

4. USING RAQ TO TEACH RELATIONAL
ALGEBRA CONCEPTS

The RAQ software can be used to teach
relational algebra concepts interactively that

are usually explained intuitively. The advantage
of using RAQ is that students can visualize the
concepts when they are implemented as RAQL
programs. Some examples of RA concepts that
can benefit from this approach are described

next.

Select Before Join

When select is used before join, the size of the
joined table will usually be much smaller than if
the join operation is performed first. This will
reduce the memory resources required for a
query and should decrease processing time. The
Query2 RAQL program shown below achieves
the Query1 result, but starts with a select

operation.

-- RA Query2: Select before Join
T1 = TSelect('STKTYPE', "ProdLine=3")
T2 = TJoin('STOCK', T1, "SType=TType")
T3 = TProject(T2, "StkNo,StkName,QtyOnHand")

This program can be compared to the Query1
program, where the join operation is performed

first. The relative size of the two joined cursors
(T1 in Query1 and T2 in Query2) highlights the
advantage of joining tables "later."

Set Union and Intersection

The union of sets A and B consists of all distinct
members of A and B. In RA, the union of two

tables does not include duplicate rows. This

Information Systems Education Journal (ISEDJ) 9 (5)
 October 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 23

www.aitp-edsig.org /www.isedj.org

concept can be illustrated with the following
Query3 program.

-- RA Query3: Union and Intersection
TA = TSelect('STOCK', "QtyOnHand<50")
TB = TSelect('STOCK', "SType='C'")
T1 = TUnion(TA, TB)
T2 = TIntersect(TA, TB)

In this program, cursors TA and TB have
identical attribute domains (union-compatible).
The union cursor T1 does not contain duplicates
of rows that satisfy both conditions. The
intersection cursor T2 identifies the rows that
are in both TA and TB.

Set Intersection and Difference

In set theory, it is known that the relationship
between intersection and difference satisfies the
equation

A  B = A - (A - B)

The Query4 program listed below verifies this
relationship.

-- RA Query4: Intersection and Difference
TA = TSelect('STOCK', "OnOrder='N'")
TB = TSelect('STOCK', "SType='T'")
T1 = TMinus(TA, TB)
T2 = TMinus(TA, T1)
T3 = TIntersect(TA, TB)

Here, cursor T1 is A - B, T2 is A - (A - B), and
T3 is A  B. Students can observe that T2 and

T3 are identical.

Product vs. Divide

The RA divide operation is sometimes described
as the "inverse" of the product operation, in the
sense that for tables A and B,

(A x B) ÷ B = A

The following Query5 program illustrates the
nature of this relationship.

-- RA Query5: Product and Divide
TA = TSelect('STOCK')
TB = TSelect('STKTYPE')
T1 = TProduct(TA, TB)
T2 = TDivide(T1, TB)

In this code, T1 is A x B and T2 is (A x B) ÷ B.
Students can note that cursor T2 is the same as

cursor TA.

5. SPECIAL CONSIDERATIONS

The RAQ software is not a feature-rich,
industrial-strength software product. It was
designed for academic use to provide a simple

way to teach relational algebra concepts
through programming. Users of this software
should be aware of certain limitations and
special considerations.

1. There is a 100-line maximum for RAQL
query programs (not including comments).
Each instruction must be on a single line.

2. RAQ provides modest error checking. Error
messages are displayed in the upper-right
corner of the screen. Messages state the type of
error or show the offending line of code.

3. RAQ has limited input options for data.
The database must be in an Access MDB (not

ACCDB) file. If necessary, convert the ACCDB
file to MDB format. More generally, if the
database is an ODBC data source (e.g. Oracle,
SQL Server, MySQL), then the table structures

and data can be imported into an Access file
before using RAQ.

4. RAQL query programs must be in a text
file with a TXT extension. Programs have to be
created and modified with a separate text
editor, since RAQ does not provide editing
capabilities.

5. RAQ output for query results are shown
on the screen. The display of intermediate
cursors cannot be skipped, but RAQL programs
are usually short. Query output can be saved in

XLS files, and the Windows operating system
provides various print-screen options.

6. For convenience in expressing RA

queries, duplicate field names should be
avoided in databases. If you prefer to have
duplicate field names in separate tables (e.g.
the same name for primary key and foreign
key), use the TRename function in RAQL
programs. This is a constraint inherent in

relational algebra (Date, 2004) and not just in
our RAQ software.

The SQL SELECT statement allows a field to be
specified by including the name of the relevant
table (e.g. STOCK.SType). The SELECT
statement can do this because intermediate

cursors generated in the processing of the

statement are invisible and are not referenced.
We do not have this luxury in RAQL. Each RAQL
statement generates a temporary cursor with
an unknown name. If a cursor has a duplicate
field name, we cannot "hard-code" the unknown
cursor name to identify the field.

7. Nesting of RA function calls within a

single statement is permitted but not

Information Systems Education Journal (ISEDJ) 9 (5)
 October 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 24

www.aitp-edsig.org /www.isedj.org

recommended. Nested function calls defeat the
opportunity to see intermediate result cursors
while RA operations are performed. Nesting also
disguises the procedural nature of relational

algebra.

8. The RAQ software has been tested in
Windows XP, Windows Vista, and Windows 7.
Administrative privileges may be required for
Vista or Windows 7, since RAQ writes some
temporary files to the disk.

6. SUMMARY AND CONCLUSIONS

In this paper, we presented arguments for including

coverage of relational algebra (RA) along with SQL in

database courses. We argued that, in teaching relational

algebra to database students, a programming approach is

preferable to a mathematical approach. Our recommended

programming style is to write query programs in a special

Relational Algebra Query Language (RAQL). In this

language, query programs are expressed as sequences of

function calls, where each call performs one RA operation.

Following this format, students gain experience using a

procedural query language while learning relational algebra.

Writing query programs improves the educational

experience for students, but learning is enhanced if students

can execute their query programs. We have developed a

custom Relational Algebra Query (RAQ) software

environment in which RAQL programs can be run.

The RAQ software allows students to see the intermediate

results during the sequence of relational algebra operations.

With this capability, students can visualize RA concepts and

explore performance issues. Thus, they can learn RA in a

manner similar to how they learn SQL—by writing code and

watching it run. As Knuth might say, students can better

understand a problem by teaching a computer how to solve

it (Shustek, 2008).

Note: An executable version of the RAQ program, along

with runtime files and the database examples in this paper,

can be obtained from the lead author.

7. REFERENCES

Codd, E. F. (1972). Relational Completeness of

Data Base Sublanguages. In Rustin, Randall
(ed.), Data Base Systems, Courant
Computer Science Series 6. Prentice Hall.

Connolly, T., & Begg, C. (2009). Database
Systems: A Practical Approach to Design,
Implementation, and Management (5th ed).
Addison-Wesley.

Date, C. J. (2004). An Introduction to Database
Systems (8th ed). Addison-Wesley

Date, C. J., & Darwen, H. (2007). Databases,
Types, and the Relational Model (3rd ed).
Addison-Wesley.

Dietrich, S. (2001). Understanding Relational
Database Query Languages. Prentice Hall.

Elmasri, R., & Navathe, S. (2006).
Fundamentals of Database Systems (5th
ed). Addison-Wesley.

Hoffer, J., Prescott, M., & Topi, H. (2008).
Modern Database Management (9th ed).
Prentice Hall.

Leyton, R. (2010). LEAP RDBMS: An
Educational Relational Database
Management System. leap.sourceforge.net.

Robbert, M., & Ricardo, C. (2003). Trends in the
Evolution of the Database Curriculum.
Proceedings of the 8th Annual Conference
on Innovation and Technology in Computer

Science Education. Greece.

Shustek, Len (2008). Donald Knuth: A Life's
Work Interrupted. Communications of the
ACM.

Silberschatz, A., Korth, H., & Sudarshan, S.
(2006). Database System Concepts (5th
ed). McGraw Hill.

Voorhis, D. (2010). An Implementation of Date
and Darwen's Tutorial D Database
Language. dbappbuilder.sourceforge.net
/Rel.php.

Information Systems Education Journal (ISEDJ) 9 (5)
 October 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 25

www.aitp-edsig.org /www.isedj.org

 APPENDIX A: INVENTORY Database – Sample Data

STOCK Table

StkNo SType StkName QtyOnHand OnOrder

101 B Prune Basket 65 N

105 B Pear Basket 48 N

107 B Peach Basket 21 Y

202 W Deluxe Tower 54 N

204 W Special Tower 29 N

301 T Mint Truffles 116 N

303 T Almond Truffles 44 Y

304 T Mocha Truffles 72 N

306 T Mixed Truffles 93 N

401 F Chocolate Fudge 145 N

404 F Marble Fudge 103 N

502 C Berry CheeseCake 73 N

505 C Apple CheeseCake 46 N

506 C Lemon CheeseCake 18 Y

508 C Plain CheeseCake 65 N

STKTYPE Table

TType TypeName ReorderPt LotSize ProdLine

B Basket 60 90 1

C CheeseCake 50 75 2

F Fudge 120 180 3

T Truffles 90 120 3

W Tower 40 60 1

Information Systems Education Journal (ISEDJ) 9 (5)
 October 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 26

www.aitp-edsig.org /www.isedj.org

APPENDIX B: Relational Algebra Project

This project uses a Microsoft Access file that contains a Time-and-Billing database for the

XFiles group in the FBI. The file is called XFILES.mdb. The database is used to track the

number of hours spent by agents on cases. Each agent fills out her/his time card each day,

charging up to 8 hours per day on cases.

The database consists of three tables: AGENT, CASES, and TIMECARD. The relational model

for this database is shown in the following diagram.

1. Write a Relational Algebra Query Language (RAQL) program for each of the following

queries:

Query 1: List the agent ID, last name, position, and bill rate of all Special Agents that

have a bill rate greater than $75 per hour.

Query 2: List the case number, case title, and budget of all cases that have been worked

on by a female agent.

Query 3: List the agent ID, last name, specialty, and bill rate of all agents that have

worked on the Fat-Sucking Vampire case.

Query 4: List the work date, case title, agent ID, and hours for all time card records

where less than 4 hours were charged.

Query 5: List the last name, first name, and gender of all agents that are female or have

worked on the Bermuda Triangle case.

Query 6: List the last name, first name, and gender of all agents that are female and

have worked on the Bermuda Triangle case.

Query 7: List the agent ID, last name, and specialty of all agents that have not worked

on the Dark Matter case.

Query 8: List the agent ID, last name, and first name of all agents that have worked on

every case that Scully has worked on.

2. Use the RAQ software to run your query programs. For each query, save the final output

table in an Excel file.

3. Combine your query results in a Word document, grouping together for each query:

a. The word definition of the query.

b. The source code for your RAQL program.

c. The final output table from the query.

