

©2012 EDSIG (Education Special Interest Group of the AITP) Page 1

www.aitp-edsig.org - www.isedj.org

Volume 10, Issue 3
June 2012

ISSN: 1545-679X

Information Systems

Education Journal

In this issue:

4. A combined MIS/DS Course uses Lecture Capture Technology to “Level the

Playing Field” in Student Numeracy

Karen Popovich, Saint Michael’s College

18. Involuntary Commitment Application: An Online Training Module

Kimberly Y. Whitfield, University of North Carolina Wilmington

35. Treating the Healthcare Workforce Crisis: A Prescription for a Health

Informatics Curriculum

S. Matt Campbell, University of South Alabama

J. Harold Pardue, University of South Alabama

Herbert E. Longenecker Jr., University of South Alabama

H. Les Barnett, University of South Alabama

Jeffrey P. Landry, University of South Alabama

47. Comparatively Assessing The Use Of Blackboard Versus Desire2learn:

Faculty Perceptions Of The Online Tools

Adnan A. Chawdhry, California University of Pennsylvania

Karen Paullet, American Public University System

Daniel Benjamin, American Public University System

55. Cloud Computing as a Core Discipline in a Technology Entrepreneurship

Program

James Lawler, Pace University

Anthony Joseph, Pace University

67. Reasserting the Fundamentals of Systems Analysis and Design through the

Rudiments of Artifacts

Musa Jafar, West Texas A&M University

Jeffry Babb, West Texas A&M University

Information Systems Education Journal (ISEDJ) 10 (2)
 June 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 2

www.aitp-edsig.org /www.isedj.org

The Information Systems Education Journal (ISEDJ) is a double-blind peer-reviewed
academic journal published by EDSIG, the Education Special Interest Group of AITP, the
Association of Information Technology Professionals (Chicago, Illinois). Publishing frequency is
six times per year. The first year of publication is 2003.

ISEDJ is published online (http://isedjorg) in connection with ISECON, the Information Systems
Education Conference, which is also double-blind peer reviewed. Our sister publication, the
Proceedings of ISECON (http://isecon.org) features all papers, panels, workshops, and
presentations from the conference.

The journal acceptance review process involves a minimum of three double-blind peer reviews,
where both the reviewer is not aware of the identities of the authors and the authors are not
aware of the identities of the reviewers. The initial reviews happen before the conference. At
that point papers are divided into award papers (top 15%), other journal papers (top 30%),
unsettled papers, and non-journal papers. The unsettled papers are subjected to a second
round of blind peer review to establish whether they will be accepted to the journal or not. Those
papers that are deemed of sufficient quality are accepted for publication in the ISEDJ journal.
Currently the target acceptance rate for the journal is about 45%.

Information Systems Education Journal is pleased to be listed in the 1st Edition of Cabell's
Directory of Publishing Opportunities in Educational Technology and Library Science, in both
the electronic and printed editions. Questions should be addressed to the editor at

editor@isedj.org or the publisher at publisher@isedj.org.

2012 AITP Education Special Interest Group (EDSIG) Board of Directors

Alan Peslak

Penn State University

President 2012

Wendy Ceccucci

Quinnipiac University

Vice President

Tom Janicki

Univ of NC Wilmington

President 2009-2010

Scott Hunsinger
Appalachian State University

Membership Director

Michael Smith
High Point University

Secretary

George Nezlek
Treasurer

Eric Bremier
Siena College

Director

Mary Lind
North Carolina A&T St Univ

Director

Michelle Louch
Sanford-Brown Institute

Director

Li-Jen Shannon
Sam Houston State Univ

Director

Leslie J. Waguespack Jr
Bentley University

Director

S. E. Kruck
James Madison University

JISE Editor

 Nita Adams

State of Illinois (retired)
FITE Liaison

Copyright © 2012 by the Education Special Interest Group (EDSIG) of the Association of Information Technology
Professionals (AITP). Permission to make digital or hard copies of all or part of this journal for personal or classroom
use is granted without fee provided that the copies are not made or distributed for profit or commercial use. All copies
must bear this notice and full citation. Permission from the Editor is required to post to servers, redistribute to lists, or
utilize in a for-profit or commercial use. Permission requests should be sent to Wendy Ceccucci, Editor,
editor@isedj.org.

http://www.cabells.com/
http://www.cabells.com/
mailto:editor@isedj.org
mailto:publisher@isedj.org
mailto:editor@isedj.org

Information Systems Education Journal (ISEDJ) 10 (2)
 June 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 3

www.aitp-edsig.org /www.isedj.org

Information Systems

Education Journal

Editors

Wendy Ceccucci
Senior Editor

Quinnipiac University

Thomas Janicki
Publisher

University of North Carolina
Wilmington

Donald Colton
Emeritus Editor

Brigham Young University
Hawaii

Jeffry Babb
Associate Editor

West Texas A&M
University

Nita Brooks
Associate Editor

Middle Tennessee
State University

George Nezlek
Associate Editor

ISEDJ Editorial Board

Samuel Abraham
Siena Heights University

Alan Abrahams
Virginia Tech

Gerald DeHondt II
Grand Valley State University

Janet Helwig
Dominican University

Scott Hunsinger
Appalachian State University

Mark Jones
Lock Haven University

Mary Lind
North Carolina A&T State Univ

Pacha Malyadri
Osmania University

Cynthia Martincic
Saint Vincent College

Muhammed Miah
Southern Univ at New Orleans

Alan Peslak
Penn State University

Samuel Sambasivam
Azusa Pacific University

Bruce Saulnier
Quinnipiac University

Karthikeyan Umapathy
University of North Florida

Bruce White
Quinnipiac University

Charles Woratschek
Robert Morris University

Peter Y. Wu
Robert Morris University

Information Systems Education Journal (ISEDJ) 10 (2)
 June 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 67

www.aitp-edsig.org /www.isedj.org

Reasserting the Fundamentals of

Systems Analysis and Design through the
Rudiments of Artifacts

 Musa Jafar

mjafar@mail.wtamu.edu

Jeffry Babb
jbabb@mail.wtamu.edu

Department of Computer Information and Decision Management

West Texas A&M University

Canyon, TX 79016

Abstract

In this paper we present an artifacts-based approach to teaching a senior level Object-Oriented

Analysis and Design course. Regardless of the systems development methodology and process model,
and in order to facilitate communication across the business modeling, analysis, design, construction

and deployment disciplines, we focus on (1) the ability to define the boundaries of the system through
context analysis, (2) the separation between business needs and technology requirements (business
requirements vs. software requirements specifications), (3) the clear separation between analysis and
design (business-domain models vs. analysis models vs. design models), (4) the evolution of artifacts
from domain artifacts, to analysis artifacts and to design artifacts, and (5) the application of

abstractions, formal methods and patterns to produce the necessary design artifacts. Thus, we
emphasize the transition from computation-independent models, to platform-independent models, to
platform-specific implementation models. We assert that the qualities of the produced artifacts convey
the essentials of a student’s understanding of analysis and design. In this sense, as students engage
the artifacts of design, they converse with the problem and solution space in a manner that
strengthens their command of the interface between information systems and organizations. We

assert that faculty teaching an Analysis and Design course should focus on the quality of artifacts that
serve as the “meeting point or interface” between the problem space and the solution space rather
than on the development methodology(s) and process model(s) involved.

Keywords: Object Oriented, Analysis, Design, Use-case, object model, sequence diagram, artifacts

1. INTRODUCTION

Systems analysis and design persists as a core
concern for the Information Systems discipline
and programs designed to instruct students in
the fundamentals of Information Systems.
Systems analysis and design remains a core
concern as the processes and artifacts of

analysis and design reconcile between the

technical and organizational concerns for any
information system. While the composition and
depth of curricular content in analysis and
design have always been debatable, the
curriculum in analysis and design has always
been influenced by: (1) the structure of the
academic program; (2) the skill set of the

faculty teaching the course; (3) the experience

Information Systems Education Journal (ISEDJ) 10 (2)
 June 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 68

www.aitp-edsig.org /www.isedj.org

of the faculty in software development; (4) the
set of tools used in the course; (5) the paradigm
used to teach the course (Object-Oriented,
structured, etc.); and (6) the position of the

course in the program curriculum (Russell,
Tastle, & Pollacia, 2003).

Generally, our concern with systems analysis
and design is in developing (1) an in-depth
understanding of the problem domain; and (2) a
multi-contextual (Analysis, Design, Construction,
Testing and deployment) communication of

descriptions regarding the solution domain.
These elements have been well-articulated: “To
program is to understand: The development of

an information system is not just a matter of
writing a program that does the job. It is of the
utmost importance that development of this

program has revealed an in-depth understanding
of the application domain; otherwise, the
information system will probably not fit into the
organization. During the development of such
systems, it is important that descriptions of the
application domain are communicated between
system specialists and the organization.”

(Madsen et al., 1993, p.3)

In a course on systems analysis and design, it is
quite common that, in addition to systems
analysis and design topics, faculty also tend to
focus heavily on the development process itself.
As a design process model suggests operations

at a higher order of analysis, some of these

topics are difficult for students to comprehend.
Put another way, the concerns of process are
premature for students who must first grasp the
fundamentals of the artifacts of analysis and
design, and particularly, of design.
Furthermore, some related subjects, such as

user interface design and database design, often
require separate courses despite their obvious
connection to the concerns of systems analysis
and design. Similarly, operating in a
development environment, preparing the
deployment environment, designing for
scalability, designing for quality assurance, and

configuration management are hard to teach in
a classroom - they typically require many years

of experience and on-the-job training.
Accordingly, educators need to be very selective
of the content they teach and the prerequisites
needed as they need to concentrate on the core
topics of analysis and design.

To teach students how to analyze, design, build
and maintain useful and usable software
system products (Brooks, 1995), IS programs
typically offer a system analysis and design

course that focuses on requirements gathering,
analysis, and high-level design as an essential
element of the undergraduate curriculum. Also,
if complemented by a capstone “finishing” and

synthesizing course, a course in systems
analysis and design can also focus on low-level
design, construction, testing, deployment, and
packaging. These two courses cover the major
aspects of the factory-life phases of a software
system product in contrast to its lifetime-in-use.
Throughout this curricular process, students

learn about the tools, processes, artifacts, and
quality-assurance aspects of what is needed to
build a software system product (Brooks, 1995;
Gupta and Wachter, 1998).

This paper illustrates how we address the
following questions in teaching the students how

to perform analysis and design: (1) where do we
start the analysis and design process? (2) What
are the activities that are performed? (3) What
are the artifacts that are produced? (4) What are
the dependencies between the different
artifacts? (5) How to evolve domain artifacts to
analysis artifacts to design artifacts to

development artifacts? (6) How to use UML tools
to support and automate the creation,
maintenance and transition of artifacts? This
artifacts-centered, UML-Tools based approach
focuses our students on the rudiments of
systems analysis and design by focusing on the

quality of artifacts and their evolution that

facilitate these activities. By the time, our
students start their profession, they should be
comfortable and versant in the rudiments of the
SAD course as they pertain to the essential
artifacts of design. Given a description of a
business problem from a subject matter expert,

our students should be able to identify their
business needs in the form of business
requirements and system requirements. They
should be able to produce the appropriate
system context, functional architecture, use-
cases and use-case diagrams. Given a use-case,
they should be able to produce the object

models, sequence diagrams and activity
diagrams and screen layouts. Given an object

model, they should be able to produce the
conceptual database schema. Given a conceptual
database schema, they should be able to
produce the logical database schema (SQL
DDL(s)) etc. This is a simpler, and perhaps not-

synthesized, level of understanding, but it is
focused on the outcome of mastering the basics.

Information Systems Education Journal (ISEDJ) 10 (2)
 June 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 69

www.aitp-edsig.org /www.isedj.org

Explicating our Exemplar

In our program, our first course in systems
analysis and design is a junior/senior level
course. For a textbook, we have used “Applying

UML and Patterns: An Introduction to Object-
Oriented Analysis and Design” by Larman
(2005), and supplemented by other course
materials and Microsoft Word document
templates from IBM Rational. For analysis and
design software tools we use IBM Rational
Architect. As reference texts, we use

Requirements Management Using IBM Rational
Requisite Pro (Zielczynski, 2008), Visual
Modeling with IBM Rational Software Architect

(Quatrani & Palistrant, 2006), and UML and IBM
Rational Unified Process Reference and
Certification Guide (Shuja & Krebs, 2008). We

use IBM Rational Software Architect as a UML-
based CASE tool. IBM Rational Architect provides
support for creating, sharing and managing of
UML models during analysis and design. It is
used as a repository and a management tool for
the various artifacts across the team members
(model, documents, etc.) (Quatrani & Palistrant,

2006). Figure 1 IBM Rational: User ViewFigure
1 is a screenshot a user’s view of the tool’s
frontend, it allows analyst designers and
developers to collaborate and share the various
analysis and design artifacts (models and
documentation) into a repository with visual

front-end. All IBM Rational software and

educational materials are available free of
charge for academic programs participating in
the IBM Rational Academic Initiative Program.

Our course has object-oriented programming
and database design as pre-requisites. For
homework assignments, students are required to

produce the necessary analysis and design
artifacts using a combination of Word documents
(using IBM Rational document templates) and
UML models using IBM Rational Software
Architect. For the final project, students work in
teams to produce the complete analysis and
design artifacts (Word documents, UML models,

and prototype demos).

In this paper, we share an artifacts-based
approach in the delivery of our Object-Oriented
Systems Analysis and Design course. By
“artifacts-based” approach, we mean that
regardless of the software engineering
methodology and process model (Agile, Unified,

SCRUM, Extreme Programming, etc.), we focus
on the artifacts, their dependencies and
transformation that lead to the construction of
the product. The Rational Unified Process lists

twenty-one analysis and design artifacts (Crain,
2004), some of the artifacts are redundant and
they do overlap we do not cover all of the
artifacts in the course. In this paper, we

emphasize on the structure of six primary
artifacts (System Context, Requirements, Use-
Case Modeling, Object Modeling, and State
Diagrams) and activity diagrams. We hold that
such an emphasis strengthens the perceptive
skills students require in order to understand the
wider process of systems development. A focus

on the qualities and mechanics of the analysis
and design artifacts serves to remind students
about the role these artifacts play as an
interface between the ‘inner’ environment, the

substance and organization of the artifact itself,
and an ‘outer’ environment, the surroundings in

which it operates.” (Simon, 1996)

2. THE ANALYSIS DISCIPLINE

To analyze a system is to build a set of
consistent and interrelated models on the basis
of which a software system can be designed.
During analysis, we define:

(1) The boundaries of the system represented as

a UML system context model.

(2) The users of the system represented as a set
of primary and secondary actors.

(3) The functional requirements of each actor(s)

group organized and described in a Word
document (explicitly listing capabilities
requirements – the “should” and “should-nots”).

(4) The business logic of the elementary
business processes of the system represented as
UML diagrams (use-case, system sequence,
collaboration diagrams, and activity diagrams)
and a Word document containing descriptions of
use-case scenarios.

(5) The information models of the system
represented as UML domain object models.

(6) The functional architecture of the system
represented as UML functional subcomponents.

(7) The software requirements specifications of
the system (non-functional or other
requirements depending upon what it is named)

which also includes performance, reliability,
security, and other concerns.

Essentially, the analysis team produces robust
and consistent professional documents and rich
graphical models using a word processor and a
modeling tool such as IBM Rational Architect.
Accordingly, the analysis team produces artifacts

Information Systems Education Journal (ISEDJ) 10 (2)
 June 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 70

www.aitp-edsig.org /www.isedj.org

related to documenting an expressive platform
independent model on the basis of which the
system can be designed.

Where to Start?

Software development is the art of moving
forward. To overcome the “analysis paralysis”
dilemma, the challenge facing the designer is: to
orbit sufficiently in problem-domain modeling to
generate enough momentum to begin analysis;
to orbit sufficiently in analysis to gather enough
momentum to move to design; etc. One of the

biggest challenges is to teach students where to
start. The artifacts of design create the
milestones for an analysis and design project

and signal to the designers that we have
gathered enough quality artifacts to move
forward, partially or completely, to the next

phase.

We start by defining the system context. By
doing so, we define the boundaries of the
system. We define the primary actors (both
humans and other applications) and the
secondary actors of the system. The system
context is typically conveyed in a Word

document that details the characteristics of each
actor group accompanied by UML architectural
models that highlights the primary and
secondary actors of the system and their
patterns of interaction with the system through

system-level sequence diagrams. We use the
actors list defined in the system context to

define and produce the functional requirements
document and the functional architecture model,
see Figure 1. We use the functional
requirements to detail the use-case scenarios
and produce the use-cases document, use-case
models and system sequence diagrams models.

For human-actors we produce detailed sequence
diagrams user interfaces and storyboards, for
application-actors we produce contract (API)
specifications. We then use the use-case
scenarios to build bottom-up domain object
models. We use the domain object models to
produce the state transition diagrams of the

noteworthy objects. We use the analysis models

and software requirements specifications to
produce the design models. We use the use-
cases, system requirements and domain models
to produce system architecture and the detailed
design.

The System Context

The system context artifact starts as a UML
model. It documents the primary and secondary
actors of the system and their characteristics. It

allows us to define the boundaries of the
systems. The system context is the primary
input to the functional requirements of the
system. It helps us define (1) primary business

actors (both human and other systems) that
require services from the system, (2) the
primary system administrator actors responsible
for administering and maintaining the system,
and (3) the secondary actors (which are other
systems) that are in the workflow of the
elementary business processes of the primary

actor(s).

The analysis domain is not without its
difficulties, as analysis is where we reconcile

between the technical and organizational
concerns in the identification of actors. When
defining primary actors, we sometimes have the

tendency to ignore the serviceably of the system
(primary system actors); we do, however,
emphasize that there is always an application
administrator actor, a system administrator
actor, and in some cases a service layer monitor
actor (another system that may have to monitor
the health of the application). Primary

application actors are responsible for the
monitoring, operations support, administration,
backup, recovery, maintenance and
serviceability of the application. They have their
own “System-Level” functional requirements to
perform their operations. Using a Student

Information System as an example, the system

context in Figure 2 shows Student(s), Faculty,
the Library System, Application Admin, and
System Admin as primary actors, and the
Finance System, the Financial Aid System and
the Library System as secondary actors. We are
highlighting the Library System as both a

primary and a secondary actor to make the point
that an actor can be both primary and
secondary. Within the UML tool front-end, as
illustrated in Figure 1, we can capture the
characteristics of each actor group and provide
text description within the document editor or
attach a document detailing the characteristic of

the actor group as a URL.

The Requirements

A requirement is a service that the system needs
to provide or a capability to which the system
needs to conform to. Although completely
different, requirements are usually divided into
(1) the functional or business requirements that

capture the business functions of the system
and (2) the system requirements (Software
requirements specifications) that provide the
scaffolding and the infrastructure support of the

Information Systems Education Journal (ISEDJ) 10 (2)
 June 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 71

www.aitp-edsig.org /www.isedj.org

business functions of the system. Depending on
the software engineering methodology used, the
system requirements are also called the
nonfunctional, other, or supplementary

requirements. UML allows for the modeling of
functional requirements through use-case
diagrams, system sequence diagrams, and
activity diagrams. UML however, does not
provide a framework for modeling system
requirements. The requirements document is a
well-written Word document that includes both

the functional and system requirements of the
proposed system. It clearly captures the
functional and the non-functional requirements
of the system. Figure 3 illustrates a sample

table-of-contents for a requirements document
that our students use as a template. We

provided the figure to emphasize the importance
of uniformity of content, and as a road map of
what to expect from analysis and design in
terms of content and deliverables. Students
have always struggled with how a document
should look like, what to include in the project
documentation, the table-of-content provides

them with a road map of what to expect in
terms of artifacts and content and their level of
detail.

The Functional Requirements

The functional requirements are the business
capabilities that the system should provide. They

are written in a request for proposal (RFP)

format by, or at least with the assistance of,
subject matter experts. These requirements are
written in clear and unambiguous short
paragraphs (as capabilities expressed in terms
such as “should” and “should-not”), with one- or
two-paragraph descriptions to provide a high-

level understanding of the capability or the
restriction.

For each primary actor, we create categorized
lists of business functions that reflect the
business needs of the actor group. The following
is a sample of functional requirements listings:

1) Student Requirements

1 A student should be able to add a

course section to their Schedule.

During the registration period,

using the internet, a student

should be able to add a course

section to their schedule from the

list of open sections as long as

it does not exceed the maximum

allowed limit for that student.

2 A student should be able to delete

a course section from their

schedule. During the drop period,

using the internet, a student

should be able to drop a course

section from their schedule as

long as they maintain the minimum

residency limits.

2) Catalogue dept. Requirements

1 Catalogue dept. should be able to

change prerequisites of an

existing course. …………

2 Catalogue dept. should be able to

assign a course to a degree plan.

3) Etc.

In summary, the functional requirements

provide a list of capabilities and restrictions. It is
an input to the use-case documents where
business logic is detailed.

The System Requirements

The system requirements are capabilities the
system needs to conform to. According to
Zielczynski (2008), they are all the requirements

that cannot be expressed in use-cases. They
drive the design and specify the system

properties. They are categorized into aspects
covering security, performance, reliability,
usability, testing, technology, external
interfaces, operations support, legal concerns,

etc.

Although two software systems may have very
different functional requirements (Billing vs.
HR), it is often the case that they have very
similar system requirements. System
requirements are usually based on common
corporate and industry best practices and

standards (IEEE Computer Society, 1998).
According to their level of interest in the system,
various stakeholders write the system
requirements. For example, security engineers

write security requirements that comply with
corporate and industry standards. Maintenance,
operations support and system administrators

write serviceability requirements. Database
administrators write the data requirements.
User-centered design (human factors) groups
write the usability requirements to comply with
the look and feel standards of the organization.

The system requirements document is an input

to the use-case details document, system

Information Systems Education Journal (ISEDJ) 10 (2)
 June 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 72

www.aitp-edsig.org /www.isedj.org

architecture document, deployment architecture,
and test cases.

The following is a sample of system
requirements listings:

1) The System should respond to a

user request for a service within

3-5 seconds 90% of the time and no

longer than 10 seconds at any

time.

2) A user account should become in-
active if it has not been used for

a configurable (default 45)

consecutive days.

3) A user should not be able to have
more than one concurrent active

session.

4) The date, time and the IP address
of the machine from which a user

logged in should be stored into

the system.

5) No Open Source code should be used
as part of the System

6) All System Windows should have a
title that reflects the task at

hand, should display the user name

and should display the current

local date and time.

7) All System windows should have
context help.

8) All necessary data should be
carried over across multiple

active screens

9) Stale records that are more than a
configurable (default one year)

old should be purged out of the

system.

10) The System should support single
sign-on products.

11) Security should be X507 Compliant.

12) Client and Server Ports should be
configurable.

The Use-Case Model

Use-case modeling is comprised of use-case UML

diagrams and use-case details that are textual
documents. Use-case diagrams are
representations of each actor, their underlying

use-cases, and the dependencies between use-
cases (extends and includes). The business logic
of functional requirements is detailed in the use-
case details document(s). Each functional

requirement is traced to one or more concrete
use-cases and each concrete use-case is traced
back to one or more functional requirements. A
concrete use-case details an elementary
business process. It is a coherent set of
functions, which embodies the business logic

needed for the system to provide while moving
the system from one consistent state to another
consistent state in response to an actor’s
request for service. During analysis, abstract

use-cases are extracted from the concrete use-
cases. Abstract use-cases contain reusable
business logic components that are common to
more than one use-case. When a use-case is too
big, it is also abstracted into a simpler set of
use-cases to simplify the business logic through
abstraction. For example, “check-prerequisites,”

“get-probation-status,” and “validate-
registration-card” are abstract use-cases of the

“register-for-class” concrete use-case, Error!

Reference source not found..

During analysis, use-case details are also
captured as activity diagrams (see Figure 9).

Many sources provide templates for use-case
documents. We use the templates from IBM

Rational as a skeleton and we modify them as
needed (Zielczynski, 2008). The following is a
common use-case template:

<Use-case Name>
1. Brief Description
2. Satisfied Requirements List
3. <Use-case Name>
4. Brief Description
5. Satisfied Requirements List
1. <Requirement Name a& Number>
2. <Another Requirement Name & Num.>

6. Actors List
1. <Actor Group Name>
2. <Another Actor Group Name>

7. Preconditions
1. <Precondition>
2. <Another precondition>

8. Use-case Flow
1. Basic Main Flow
2. Alternative Flows
3. Optional Flows
4. Exception Flows

9. Post Conditions
1. <Post Condition>
2. <Another Post Condition>

10. Included Use-cases
1. <Use-case Name and Number>
2. <Another Use-case Name and Num.>

11. Special Requirements
1. <Special Requirement>
2. <Another Special Requirement>

12. Special System Requirements
1. <Special System Requirement>
2. <Another System Requirement>

13. Assumptions, Open Issues and Comments

Information Systems Education Journal (ISEDJ) 10 (2)
 June 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 73

www.aitp-edsig.org /www.isedj.org

The Domain Object Model

The domain object model is the set of domain
objects, the attributes of each object with their

constraints and data types, and the set of
associations between objects. Associations have
cardinality and are regular, aggregation,
containment, inheritance or taxonomic. The
domain object model is a UML artifact that is
comprised of a set of diagrams and the
underlying descriptions and semantic content of

the object model artifacts. In summary, it is a
visual representation of the domain objects of
the system, their attributes, constraints and

associations with other classes. Each use-case
scenario exposes certain objects, object
attributes and relationships. For example, from a

login use-case, we learn that a user (student,
faculty, staff, etc.) has a user id and a password.
From the “add class” use-case scenario, we learn
that students have study plans and majors, and
courses have prerequisites. By analyzing the
use-cases, the object model is built from the
ground up. In Figure 5 is an example of a mini

object model.

The State Diagrams

For each domain object, a state diagram
captures the noteworthy, finite, and discrete
states of an object. Not every object necessarily

has noteworthy states. State transitions of the
same object are usually confused with the

inheritance hierarchy of an object. For example,
a student status as freshman, sophomore,
junior, or senior represents the possible state
transitions of the undergraduate student object
rather than as subclasses of student. Figure 6 is
an example of a state transition diagram of the

object student

3. THE DESIGN DISCIPLINE

 Design is an intermediate phase in the process
of moving the system from the problem space
(Analysis) to the solution space (Final Product).
To design a system is to develop a set of

artifacts – and subsequently an overall system

model – from which a software system can be
built. Given the set of all the Analysis artifacts,
time constraints, technology constraints, and
financial constraints, the system design is a
proposal for feasible solution that satisfies these
constraints. During design, inputs, processing,
data storage, output and communication

software artifacts are materialized into a set of
layered architectures that are comprised of user-

layers, processing layers, data layers,
communication layers, security layers, etc. In
this sense, designing is about making
commitments on the distribution of business

logic and the processing of business logic across
the layers.

From Analysis to Design

Transitioning from analysis into design, students
have learned how to create analysis models and
document (1) the system context with its
primary and secondary actors, (2) the functional

architecture of the system and the dependencies
between its functional components, (3) the
requirements of the system both functional and

system requirements, (4) use-cases and use-
cases analysis and (5) the domain object model,
(5) the user interface in terms of story boards

and contract specifications.

During design, students learn how to realize a
solution for the analyzed problem at hand. They
build platform-independent models during high-
level design and platform specific models during
low-level design. During design, students learn
to realize uses cases through use-layer

components, processing layer components and
data layer components. Using the web as a
computing model, students realize that they
need to (1) deign web pages based on the story
of the use-cases, (2) design database tables

based on the design object model and connect
the user layers with the data layers using a

dynamic content processor like PHP, Java Server
Pages, Python, etc.

Into Design

During design, students learn:

 To refine and redefine objects, create
abstractions, add methods to objects, refine

the data types and add constraints to
attributes based on Class Responsibilities and
Collaboration (CRC) design pattern as shown
in Figure 11.

 How to use the Model-View-Controller and
Class-Responsibilities-And-Collaboration

patterns to define the view components or

boundary classes if any (Screen designs and
layouts), controller components or processing
classes (class responsibilities and
collaborations) and Model components or
entity classes (tables and views of the
underlying data layer is a relational database
system). For the Transcript object for

example, students learn to produce the

Information Systems Education Journal (ISEDJ) 10 (2)
 June 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 74

www.aitp-edsig.org /www.isedj.org

boundary (GUI), processing and entity
(database) realizations as shown in Figure 12.

 How to use design patterns to create other
design objects such as control classes, listener

classes, messaging classes, information expert
classes, etc.

 How to utilize knowledge learned in their
database class to implement design and
implement a relational database with the
required integrity constrains.

In summary, during design, use-cases are

realized into detailed sequence diagrams where
commitments are made as to the distribution of
processing. For example, given a login use-case,

should the processing to validate a user be
performed in the user layer, the processing
layer, or in the data layer through stored

procedures? Each one of these designs has its
own advantages and disadvantages. During
design, a commitment as to how to implement
the business logic is clearly outlined.

Using a student login to the system use-case
scenario, students learn to identify the design
objects of the use-case Figure 7. A design

commitment needs to be made as to who is
responsible for validating the credentials.
Students learn to produce detailed sequence
diagrams to realize the design of use-cases. In
Figure 8, the “Login-Screen” object controls all
the authentication operations and the creation of

other objects.

However, another sequence diagram could have
distributed the logic among the various objects.
Accordingly, design is a commitment to a
processing logic scenario that is low coupled and
highly cohesive.

From Analysis and Design to Design and
Development

It is prudent to identify what has been left out of
our discussion, as these left-out parts are a also
a vital component of our systems analysis and
design curricular sequence, but are included in
our capstone course. To wit, there are other

important design issues for which a rudimentary

and artifacts-centered approach is also
appropriate. A few of these issues that we feel
are important are: (1) testing; (2) designing for
performance; (3) designing for scalability; (4)
designing for security; and (5) designing for
robustness. As such, each of these are deferred
to our capstone course, which itself is a

synthesizing course meant to bring the principle
pillars of our curriculum together.

To some degree, we can think of these as
intermediary concerns, and are, appropriately,
left to a course focused on culminating the

rudiments and undertaking a deeper study of
software processes: our senior capstone course.
Once students have grounded themselves in
systems analysis and design, modern object-
oriented programming, advanced web
programming, and database management, we
feel that these additional concerns of design can

then be addressed in the richer context of a
business problem in need of an information
technology solution. Once past the rudiments,
even a capstone course is merely a beginning;

students will only learn about designing for
performance, scalability, and robustness in the

context of practice in the profession. While we
feel it is prudent to discuss these issues, the
“laboratory” environment of the capstone project
course makes it difficult, but not impossible, to
demonstrate these important design issues. That
is to say, while our capstone course seeks to
involve students in projects with real clients and

attempts to provide as meaningful of an
experience as would be possible, most capstone
courses, including ours, are far from the
pressures, constraints, and strictures of reality.
Typically, these projects are either a
pilot/prototype project, or some other non-
essential product that is typically NOT on the

critical path. However, we have enjoyed notable
exceptions to this. For instance, we have
experience with on-campus clients who have
either gone on to utilize the outcomes of our
capstone course in their daily operations, or
have been very impressed with the outcomes of

the capstone course and have incorporated our
students’ work in some fashion.

4. DISCUSSION AND CONCLUSION

In this paper we presented a road-map for an
outcomes-focused, artifacts-based, hands-on,
and disciplined approach to an analysis and
design course. Our objective is to present a

disciplined approach to understanding and

producing the necessary analysis and design
artifacts (documents and models) which
consistently lead to a successful system
regardless and irrespective of the systems
development paradigm, model, and
methodology used to build the system. With this

approach, students gain hands-on technical
skills that are deliverables-centric. Our premise
is that the adherents of a predictive model, such
as the Capability Maturity Model, or the

Information Systems Education Journal (ISEDJ) 10 (2)
 June 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 75

www.aitp-edsig.org /www.isedj.org

adherents of an adaptive model, such as
Extreme Programming, should both be equally
comfortable with commonly accepted artifacts.
We also acknowledge that bridging the gap

between process modeling and object-oriented
systems modeling remains a challenge; we
contend that students will bridge this gap with
experience. However, without a solid grounding
in the qualities and characteristics of the
artifacts themselves, the “craft” of systems
design will be elusive. We think of the artisan

who must learn the tools of their craft before
they worry about the holistic and philosophical
concerns of their craft. In this sense, we feel
that we are preparing our students to use their

knowledge of the characteristics and qualities of
design artifacts to then develop their experience.

We foresee that our students will approach their
initial years in the profession as an opportunity
to learn how their designing of artifacts and their
interdependencies helps them to understand the
systems they build and the context of the
organizational problems these systems address.
More importantly, by knowing their tools, our

students can then focus on what is, and is not,
possible as they navigate the complexity of
systems specification. As they mature in their
profession, our students must develop a sense
of how the juxtaposition of the materials of
design (the artifacts), the constraints of the

design process, and the organizational

constraints of the system’s intended operational
environment, transform their understanding of
the analysis and design process. This is so also
in a cumulative and iterative tradition:
experience is accrued as the design process is
continually engaged. We err on the side of the

artifacts-based approach as we believe our
students are better equipped to learn about the
art and craft of systems designing if they are
first aware of the indelible truth inherent in the
characteristics and qualities of the artifacts of
design.

Schön and Bennett (1996) put it well when they

described a “reflective conversation with
materials” that designers conduct as they reflect

on practice. In this case, “practice” is the
consistent use of design artifacts, which is only
possible when design artifacts (the materials of
designing) are well-understood. We see this in
other areas which invite mastery: those

learning the piano practice and exercise in the
structures of chords, notes and scales; those
learning to dance exercise in the mechanics of
movement; and those learning a team sport
exercise in the patterns of play. Accordingly, in

our course we have chosen to focus on the
artifacts of design in our curriculum. Once
armed with the “scales” and building-blocks of
design artifacts, we believe that our students

can design within the framework of a
development model in the same manner that a
musician trained in the virtues of sight-reading
can work within the context of many styles of
music. In this sense, familiarity with the
artifacts of design – the rudiments – students
will have comfort with a “grammar” of design

which will serve as a repertoire to draw from in
future practice.

Most fundamental to our approach is that the

characteristics and qualities of the artifacts of
design provide the best interface between the
system and those that will use the system. In

the artifacts, we have a “lingua franca” which
allows the realm of Information Technology to
understand and accommodate the realm of the
organization. This interfacing is at the heart of
the Information Systems discipline and is most
representative of the skills and knowledge most
suited to our students’ development.

4. REFERENCES

Alter, S. (2006). Pitfalls in Analyzing Systems in
Organizations. Journal of Information
Systems Education, 17(3), 295-302.

Brooks, F. P. (1995). The Mythical Man-Month.

Addison-Wesley.

Cockburn, A. (2001). Writing Effective Use

Cases. Addison-Wesley.

Crain, Anthony (2004). The simple artifacts of
Analysis and Design, The Rational Edge
(june-8-2004)
http://www.ibm.com/developerworks/ration
al/library/4871.html?ca=dnp-326

Gamma, E., Helm, R., Johnson, R., & Vlissides,
J. (1995). Design Patterns, Elements of
Reusable Object-Oriented Software. Addison
Wesley.

Gupta, J. and Wachter, R. (1998). A Capstone

Course in the Information Systems
Curriculum. International Journal of

Information Management, 18(6), 427-441.

IEEE Computer Society. (1998). IEEE
Recommended Practice for Software
Requirements Specifications. IEEE Computer
Society. New York, NY: IEEE Computer
Society.

http://www.ibm.com/developerworks/rational/library/4871.html?ca=dnp-326
http://www.ibm.com/developerworks/rational/library/4871.html?ca=dnp-326

Information Systems Education Journal (ISEDJ) 10 (2)
 June 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 76

www.aitp-edsig.org /www.isedj.org

Jacobson, I., Christerson, M., & Overgaard, G.
(1992). Object-Oriented Software
Engineering, A Use Case Driven Approach.
Addison Wesley.

Larman, C. (2005). Applying UML and Patterns.
Prentice Hall.

Madsen, O. L., Moller-Pedersen, B., & Nygaard,
K. (1993). Object-Oriented Programming in
the BETA Programming Language. Retrieved
6 12, 2010, from
www.daimi.au.dk/~beta/Books/betabook.pdf

:

Object Management Group. (2010, May 03).

OMG Unified Modeling Language (OMG UML)
Infrastructure, Version 2.3. Retrieved June
05, 2010, from
http://www.omg.org/spec/UML/2.3/

Quatrani, T., & Palistrant, J. (2006). Visual
Modeling with IBm Rational Software
Architect. Upper Saddle River, New Jersey:
IBM Press, Pearson Ed.

Rumbaugh, J., Jacobson, I., & Booch, G. (2005).
The Unified Modeling Language Reference
Manual. Addison Wesley.

Russell, J., Tastle, W., & Pollacia, L. (2003). The
State of Systems Analysis and Design.
ISECON. San Diego.

Schon, D.A. & Bennett, J. (1996). Reflective

Conversation with Materials. Bringing
Design to Software, Winograd, T. (Ed.).
New York: ACM Press.

Shuja, A. K., & Krebs, J. (2008). IBM Rational
Unified Process Reference and Certification
Guide. IBM Press, Pearson Ed.

Simon, H.A. (1996). The Sciences of the

Artificial, 3rd Edition. Cambridge: MIT
Press.

Steinberg, D. H., & Palmer, D. W. (2004).
Extreme Software Development. Pearson
Prentice Hall.

Wand, Y. and Webber, R. (1993) On the

ontological expressiveness of information
systems analysis and design grammars.
Information Systems Journal, 3(4), 1993,
217–237.

Zielczynski, P. (2008). Requirements
Management Using IBM Rational
RequisitePro. Upper Saddle River, New

Jersey: IBM Press, Pearson Ed.

Information Systems Education Journal (ISEDJ) 10 (2)
 June 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 77

www.aitp-edsig.org /www.isedj.org

APPENDIX

Figure 1 IBM Rational: User View

Attaching actor specifications

document as a url-links.

Description of the Student actor using

the document editor

Information Systems Education Journal (ISEDJ) 10 (2)
 June 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 78

www.aitp-edsig.org /www.isedj.org

Figure 2 A System Context Diagram

Information Systems Education Journal (ISEDJ) 10 (2)
 June 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 79

www.aitp-edsig.org /www.isedj.org

Figure 3 The Table of Contents for A Requirements Document

1. INTRODUCTION AND PURPOSE .. 1
2. DEFINITIONS, ACRONYMS AND ABBREVIATIONS ... 1
3. DEPENDENCIES AND REFERENCES .. 1
4. DOCUMENT OVERVIEW AND TARGETED AUDIENCE .. 1
5. CUSTOMERS AND OWNERS ... 1
6. REVISION HISTORY EVOLUTION .. 1
7. PRODUCT OVERVIEW ... 2

7.1 PRODUCT PERSPECTIVE.. 2
7.2 SUMMARY OF CAPABILITIES [LATER] .. 2

8. THE CURRENT FUNCTIONAL ARCHITECTURE .. 2
8.1 THE CURRENT FUNCTIONAL ARCHITECTURE DIAGRAM .. 2
8.2 <FUNCTIONAL COMPONENT NAME AND DESCRIPTION> ... 2

9. STAKEHOLDERS AND STAKEHOLDER GROUPS PROFILES .. 3
9.1 <STAKEHOLDER GROUP NAME> .. 3
9.2 <STAKEHOLDER GROUP NAME> .. 3

10. USERS AND USER ROLES’ PROFILES .. 4
10.1 <USER-ROLE NAME [PRIMARY | SECONDARY] ACTOR> .. 4
10.2 <USER-ROLE NAME [PRIMARY | SECONDARY] ACTOR> .. 4

11. THE SYSTEM CONTEXT .. 5
12. FUNCTIONAL REQUIREMENTS .. 6

12.1 <PRIMARY ACTOR GROUP ONE> ... 6
12.1.1 Requirement .. 6
12.1.2 Requirement .. 6

12.2 <PRIMARY ACTOR GROUP TWO>... 6
12.2.1 Requirement .. 6
12.2.2 Requirement .. 6

12.3 <COMMON REQUIREMENTS> ... 7
12.3.1 Requirement .. 7
12.3.2 Requirement .. 7

13. SYSTEM REQUIREMENTS ... 8
13.1 USABILITY ... 8
13.2 RELIABILITY .. 8

13.2.1 <Reliability Requirement One> .. 8
13.3 PERFORMANCE ... 8

13.3.1 <Performance Requirement One> .. 9
13.4 SUPPORTABILITY .. 9

13.4.1 <Supportability Requirement One> .. 9
13.5 DESIGN CONSTRAINTS ... 9

13.5.1 <Design Constraint One>... 9
13.6 ONLINE USER DOCUMENTATION AND HELP SYSTEM REQUIREMENTS ... 9
13.7 PURCHASED COMPONENTS... 9
13.8 INTERFACES ... 9
13.9 USER INTERFACES .. 9
13.10 HARDWARE INTERFACES ... 9
13.11 SOFTWARE INTERFACES ... 9
13.12 COMMUNICATIONS INTERFACES .. 9
13.13 LICENSING REQUIREMENTS .. 10
13.14 LEGAL, COPYRIGHT AND OTHER NOTICES ... 10
13.15 APPLICABLE STANDARDS ... 10

14. SUMMARY AND CONCLUSIONS .. 11
15. OPEN ISSUES ... 12
16. APPENDIX LIST .. 13
17. REFERENCES LIST .. 14
18. INDEX .. 15

Information Systems Education Journal (ISEDJ) 10 (2)
 June 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 80

www.aitp-edsig.org /www.isedj.org

Figure 4 A Use-case Analysis UML Diagram

Figure 5 A Simple Domain Object Model

Information Systems Education Journal (ISEDJ) 10 (2)
 June 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 81

www.aitp-edsig.org /www.isedj.org

Figure 6 State Transitions of an Undergraduate Student

Figure 7 A design Object Model of Login Use-case

Information Systems Education Journal (ISEDJ) 10 (2)
 June 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 82

www.aitp-edsig.org /www.isedj.org

Figure 8 Login Sequence Diagram One

Information Systems Education Journal (ISEDJ) 10 (2)
 June 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 83

www.aitp-edsig.org /www.isedj.org

Figure 9 A Skeleton Activity Diagram for Add Course

Information Systems Education Journal (ISEDJ) 10 (2)
 June 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 84

www.aitp-edsig.org /www.isedj.org

Figure 10 Functional Architecture

Figure 11 Platform Independent Model

Information Systems Education Journal (ISEDJ) 10 (2)
 June 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 85

www.aitp-edsig.org /www.isedj.org

Figure 12 User, processing and Storage Realizations of the Transcript Object

