
Information Systems Education Journal (ISEDJ) 13 (1)
ISSN: 1545-679X January 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 1

www.aitp-edsig.org /www.isedj.org

Volume 13, No. 1
January 2015

ISSN: 1545-679X

Information Systems

Education Journal

In this issue:

4. Business Analytics in Practice and in Education: A Competency-based

Perspective

Stanislav Mamonov, Montclair State University

Ram Misra, Montclair State University

Rashmi Jain, Montclair State University

14. Learning Styles, Online Content Usage and Exam Performance in a Mixed-

Format Introductory Computer Information Systems Course

Guido Lang, Quinnipiac University

Stephen D. O’Connell, CUNY Graduate School and University Center

23. Evaluating Business Intelligence / Business Analytics Software for Use in

the Information Systems Curriculum

Gary Alan Davis, Robert Morris University

Charles R. Woratschek, Robert Morris University

30. T0: Discrete Math and Programming Logic Topics as a Hybrid Alternative to

CS0

Nancy L. Martin, Southern Illinois University

45. A Proposed Concentration Curriculum Design for Big Data Analytics for

Information Systems Students

John C. Molluzzo, Pace University

James P. Lawler, Pace University

58. A Design Quality Learning Unit in OO Modeling Bridging the Engineer and

the Artist

Leslie J. Waguespack, Bentley University

Information Systems Education Journal (ISEDJ) 13 (1)
ISSN: 1545-679X January 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 2

www.aitp-edsig.org /www.isedj.org

The Information Systems Education Journal (ISEDJ) is a double-blind peer-reviewed
academic journal published by EDSIG, the Education Special Interest Group of AITP, the
Association of Information Technology Professionals (Chicago, Illinois). Publishing frequency is
six times per year. The first year of publication is 2003.

ISEDJ is published online (http://isedjorg). Our sister publication, the Proceedings of EDSIG
(http://www.edsigcon.org) features all papers, panels, workshops, and presentations from the
conference.

The journal acceptance review process involves a minimum of three double-blind peer reviews,
where both the reviewer is not aware of the identities of the authors and the authors are not
aware of the identities of the reviewers. The initial reviews happen before the conference. At
that point papers are divided into award papers (top 15%), other journal papers (top 30%),
unsettled papers, and non-journal papers. The unsettled papers are subjected to a second
round of blind peer review to establish whether they will be accepted to the journal or not. Those
papers that are deemed of sufficient quality are accepted for publication in the ISEDJ journal.
Currently the target acceptance rate for the journal is under 40%.

Information Systems Education Journal is pleased to be listed in the 1st Edition of Cabell's
Directory of Publishing Opportunities in Educational Technology and Library Science, in both
the electronic and printed editions. Questions should be addressed to the editor at
editor@isedj.org or the publisher at publisher@isedj.org.

2015 AITP Education Special Interest Group (EDSIG) Board of Directors

Scott Hunsinger

Appalachian State Univ
President

Jeffry Babb
West Texas A&M
Vice President

Wendy Ceccucci
Quinnipiac University

President – 2013-2014

Eric Breimer
Siena College

Director

Nita Brooks
Middle Tennessee State Univ

Director

Tom Janicki
U North Carolina Wilmington

Director

Muhammed Miah
Southern Univ New Orleans

Director

James Pomykalski
Susquehanna University

Director

Anthony Serapiglia
St. Vincent College

Director

Leslie J. Waguespack Jr

Bentley University
Director

Peter Wu

Robert Morris University
Director

Lee Freeman

Univ. of Michigan - Dearborn
JISE Editor

Copyright © 2015 by the Education Special Interest Group (EDSIG) of the Association of Information Technology
Professionals (AITP). Permission to make digital or hard copies of all or part of this journal for personal or classroom
use is granted without fee provided that the copies are not made or distributed for profit or commercial use. All copies
must bear this notice and full citation. Permission from the Editor is required to post to servers, redistribute to lists, or
utilize in a for-profit or commercial use. Permission requests should be sent to Nita Brooks, Editor, editor@isedj.org.

http://www.cabells.com/
http://www.cabells.com/
mailto:editor@isedj.org
mailto:publisher@isedj.org

Information Systems Education Journal (ISEDJ) 13 (1)
ISSN: 1545-679X January 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 3

www.aitp-edsig.org /www.isedj.org

Information Systems

Education Journal

Editors

Nita Brooks
Senior Editor

Middle Tennessee
State University

Thomas Janicki
Publisher

University of North Carolina
Wilmington

Donald Colton
Emeritus Editor

Brigham Young University
Hawaii

Jeffry Babb
Associate Editor
West Texas A&M

University

Wendy Ceccucci
Associate Editor

Quinnipiac University

Melinda Korzaan
Associate Editor

Middle Tennessee
State University

George Nezlek
Associate Editor

Univ of North Carolina Wilmington

Samuel Sambasivam
Associate Editor

Azusa Pacific University

Anthony Serapiglia
Teaching Cases Co-Editor

St. Vincent College

Lawrence Cameron
Teaching Cases Co-Editor

University of Montana

ISEDJ Editorial Board

Samuel Abraham
Siena Heights University

Teko Jan Bekkering
Northeastern State University

Gerald DeHondt II

Janet Helwig
Dominican University

Scott Hunsinger
Appalachian State University

Mark Jones
Lock Haven University

James Lawler
Pace University

Michelle Louch
Duquesne University

Cynthia Martincic
Saint Vincent College

Muhammed Miah
Southern Univ at New Orleans

Marianne Murphy
North Carolina Central University

Alan Peslak
Penn State University

Bruce Saulnier
Quinnipiac University

Li-Jen Shannon
Sam Houston State University

Karthikeyan Umapathy
University of North Florida

Bruce White
Quinnipiac University

Peter Y. Wu
Robert Morris University.

Information Systems Education Journal (ISEDJ) 13 (1)
ISSN: 1545-679X January 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 58

www.aitp-edsig.org /www.isedj.org

A Design Quality Learning Unit in OO Modeling

Bridging the Engineer and the Artist

Leslie J. Waguespack
lwaguespack@bentley.edu

Computer Information Systems Department
Bentley University

Waltham, Massachusetts 02452, USA

Abstract

Recent IS curriculum guidelines compress software development pedagogy into smaller and smaller
pockets of course syllabi. Where undergraduate IS students once may have practiced modeling in
analysis, design, and implementation across six or more courses in a curriculum using a variety of
languages and tools they commonly now experience modeling in four or fewer courses in at most a

couple of paradigms. And in most of these courses their modeling decisions focus on acceptable
syntax rather than principles representing and communicating concepts of quality in information
systems. Where learning design quality may once have been an osmotic side effect of development
practice it must now be a conscious goal in pedagogy if it is to be taught at all. This paper presents a
learning unit that teaches design quality in object-oriented models. The focus on object-oriented
models allows the learning to permeate analysis, design, and implementation enriching pedagogy

across the systems development life cycle. The quality perspective presented is more expansive than
that usually found in software engineering, the traditional “objective” notion of metrics, and integrates

aspects of aesthetics, the more subjective phenomena of satisfaction. This learning unit is intended as
an adaptable framework to be tailored to the coursework and the overall objectives of specific IS
programs.

Keywords: design quality, design, OO modeling, IS discipline, IS curricula, IS pedagogy

1. INTRODUCTION

Over the past decade computing curricula have
been repartitioned with the permeation of
computing across disciplines and society.
(Shackelford, Cross, Davies, Impagliazzo,

Kamali, LeBlanc, Lunt, McGettrick, Sloan & Topi,
2005) There are now 5 major computing
curriculum guidelines that subdivide computing.

(Soldan, Hughes, Impagliazzo, McGettrick,
Nelson, Srimani & Theys 2004, Cassel,
Clements, Davies, Guzdial, McCauley,

McGettrick, Sloan, Snyder, Tymann & Weide,
2008, Diaz-Herrara & Hilburn, 2004, Lunt,
Ekstrom, Gorka, Hislop, Kamali, Lawson,
LeBlanc, Miller & Reichgelt, 2008, Topi, Valacich,
Wright, Kaiser, Nunamaker, Sipior & de Vreede,
2010) The co-location of IS curricula in schools
of business further exacerbates the pressure on

pedagogy as accreditation bodies further

constrain the scope of coursework by
compressing systems development into smaller
and smaller pockets of course syllabi. (AACSB
2010, EQUIS 2010) Where undergraduate IS
students once may have practiced modeling in

analysis, design, and implementation across six
or more courses in a program using a variety of
languages and tools they commonly now
experience modeling in four or fewer courses in

at most a couple of paradigms. (Waguespack
2011) And in most of these courses their

modeling decisions focus on acceptable syntax
rather than principles representing and
communicating concepts of quality in
information systems. Where learning design
quality may once have been an osmotic side
effect of development practice it must now be a
conscious goal in pedagogy if it is to be taught

at all.

Information Systems Education Journal (ISEDJ) 13 (1)
ISSN: 1545-679X January 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 59

www.aitp-edsig.org /www.isedj.org

At the same time industry and academia persist
in their lament over the paucity of focus on
quality in system design first sounded more than
four decades ago (Dijkstra, 1968) and echoing

consistently since as in (Denning, 2004, Brooks
1995, 2010, Beck, Beedle, van Bennekum,
Cockburn, Cunningham, Fowler, Grenning,
Highsmith, Hunt, Jeffries, Kern, marick, Martin,
Mellor, Schwaber, Sutherland, & Thomas 2010)

This paper presents a learning unit that teaches
design quality within the object-oriented

paradigm. The focus on OO models allows the
learning to permeate analysis, design, and
implementation enriching pedagogy across the
systems development life cycle. We amplify a
traditional “objective” notion of systems quality

(i.e. metrics usually found in software

engineering) by integrating the more subjective
phenomena of satisfaction, aesthetics. This
learning unit is adaptable to the coursework and
objectives of specific IS programs. The paper
presents: a brief overview of design quality,
properties to assess design choices, the object-
oriented ontology; and a discussion of how each

of the design choice properties express quality
through the use of object-oriented modeling
constructs. Finally, there is a description of how
the learning unit has been integrated in object-
modeling syllabi with a comment on its efficacy.

2. WHAT IS DESIGN QUALITY?

Quality is an elusive concept, shifting and

morphing on a supposed boundary between
science and art: objective, engineering
characteristics versus subjective, aesthetic
observer or stakeholder experience.
International standards of quality reflect the
challenge of defining quality by offering a variety

of perspectives (as gathered here by Hoyle
2009):

 A degree of excellence (Oxford English
Dictionary)

 Freedom from deficiencies or defects
(Juran 2009)

 Conformity to requirements (Crosby

1979)

 Fitness for use (Juran 2009)

 Fitness for purpose (Sales and Supply of
Goods Act 1994)

 The degree to which the inherent
characteristics fulfill requirements (ISO
9000:2005)

 Sustained satisfaction (Deming 1993)

(Waguespack 2010b) asserts that the quality of
systems revolves around two primary concepts:
efficiency and effectiveness defined as follows
(New Oxford American Dictionary):

Efficiency [noun]- the ratio of the useful work
performed […] in a process to the total energy
[effort] expended

Effectiveness [noun]- successful in producing a
desired or intended result

These two concepts appear primarily
quantitative and therefore objective. In and of

themselves they may well be. Portraying
efficiency using a convenient interpretation of
“work” and “effort” is genuinely objective. “How
many” or “how much” or “how often” often

depicts efficiency. But, when we ask “Is it
enough?” apparent objectivity fades away.

Likewise, the supposed objectivity of
“effectiveness” relies upon the tenuous phrase,
“desired or intended result” defined as

Intend [noun]- have (a course of action) as
one’s purpose or objective; plan

Effectiveness (like efficiency) is a
correspondence between a system and its

stakeholders’ intentions. Assessing effectiveness
depends on comparing “what is” to “what is
intended.” While the former may be expressed
quantitatively the latter presents challenges:
clarity of conception, mode of representation,

scope of contextual orientation, and fidelity of
communication to name but a few. Indeed the

notion of effectiveness is complicated when we
contemplate identifying and quantifying the
stakeholder(s) intentions objectively.

The indefiniteness or imprecision that
characterizes stakeholder intention(s) is
generally not a concern if an observer is asked

to assess the beauty of something – an
assessment generally conceded to be subjective.
A detailed or even explicit intention is not
expected in assessing beauty – beauty is most
often perceived as an experience of observation
rather than a system analysis. Most people
commonly accept beauty as subjective and

exempt from specific justification or explanation
– “Beauty is in the eye of the beholder.” and
“You’ll know it [beauty] when you see it.” This
absence of or difficulty in forming a quantitative
justification of beauty is often the basis for
categorizing artifacts or processes as products of
art rather than of engineering. And therein lies

the presumption that the aspects of design
quality that we label objective and those we
label subjective are somehow dichotomous. They
in fact teeter between objectivity and

Information Systems Education Journal (ISEDJ) 13 (1)
ISSN: 1545-679X January 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 60

www.aitp-edsig.org /www.isedj.org

subjectivity depending on the degree of
granularity that observers choose to employ in
inspecting not only the artifact but also their
own disposition toward satisfaction relative to it.

3. AN ARCHITECTURAL INTERPRETATION
OF QUALITY DESIGN

We will never be able to absolutely define design
quality because of the relativistic nature of
satisfaction in the observer experience. But, our
students must still face design choices. So, as IS
educators we must provide a framework for

them to develop and refine their individual
perceptions and understanding of systems
quality. The taxonomy of design choice
evaluation proposed in Waguespack (2008,

2010b), the 15 choice properties, is just such a
framework. (See Appendix A.) Choice properties

derive from Christopher Alexander’s writings on
design quality in physical architecture.
(Alexander 2002)

Choice properties address the process of
building, the resulting structure, and the
behavior of systems as cultural artifacts. Every
design decision, choice, contributes to the

aggregate observer experience: either positively
or negatively. Each choice exhibits the 15
properties with varying strengths or influence
that impact the resulting observer satisfaction.
The confluence of property strength results from
the coincidence of the designer’s choice with the

collective intention of the stakeholders. The

combination of all choices with their respective
property strengths results in the overall,
perceived design quality. Many of the properties
are design characteristics long recognized in
software engineering (i.e. modularization,
encapsulation, cohesion, etc.). But several reach

beyond engineering to explain aesthetics, the art
(i.e. correctness, transparency, user friendliness,
elegance, etc.). An example of the effectiveness
of choice properties in explaining the design
quality of production systems is reported in
(Waguespack, Schiano & Yates 2010a).

4. THE ONTOLOGY OF THE OBJECT-

ORIENTED PARADIGM

Illustrating design decisions in the object-
oriented paradigm can be a challenge. The
idiosyncrasies of OO programming syntax often
obscure the intention and/or the result of a
design decision. For that reason the learning unit
presented here uses a paradigm description

independent of programming language, the
object-oriented ontology, found in (Waguespack
2009) and excerpted in Appendix B. The

graphical outline of the ontology is Figure 1
below.

 Figure 1 – Object-Oriented Ontology

The ontology captures the elements of the
object-oriented paradigm eschewing the
obfuscation that usually occurs with
programming language syntax examples. At the
same time an experienced IS teacher can readily

translate the ontological elements into a relevant
programming dialect.

5. CRAFTING OBJECT-ORIENTED MODELING
CHOICES THAT STRENGTHEN PROPERTIES

OF DESIGN QUALITY

This section, the heart of the learning unit,
enumerates the 15 choice properties as defined

in Waguespack (2010b) illustrating how
modeling choices in the object-oriented ontology
can express design quality. In this space-limited
discussion one choice property often references
another reflecting the confluent nature of the
design quality properties as Alexander defines
them in physical architecture. (Alexander 2002)

Stepwise Refinement (as the name implies) is
an approach to elaboration that presumes a
problem should be addressed in stages. The
stages may represent degrees of detail or an
expanding problem scope. (Birrell and Ould

1988) In either case quality evidence of stepwise

refinement is demonstrated by the cogent and
complete representation of a design element at
whatever level of detail or scope is set at each
stage. To achieve this representation the
modeling paradigm must support abstraction
that allows generalization of the scope of
interest and then the elaboration of that scope

from one stage to the next.

The class concept in OO provides this capability.
Through the inheritance relationship a class can

Information Systems Education Journal (ISEDJ) 13 (1)
ISSN: 1545-679X January 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 61

www.aitp-edsig.org /www.isedj.org

represent the more abstract, general character
of a model feature while expressing all the
information and behavior needed at that level of
abstraction: 1) what responsibilities the objects

of this class fulfill, 2) what information they
manage, and 3) what services this class’s
objects provide the rest of the model. As the
modeling stages progress greater specialization
is achieved with child classes that redefine
abstract behaviors: by adding data and/or
behavioral attributes germane only at a lower

level of abstraction, or by defining collaborations
to support this class’s responsibilities. Stepwise
Refinement can mimic the concept of “need-to-
know.” Only that detail required to “understand”
the system at that abstraction level need be

revealed or perhaps is not even chosen until the

need arises. When the need does arise the detail
may be added within the genealogy of the class
preserving the cohesion of a class’s defined
functional responsibility at the higher abstraction
levels.

As an example, consider a class that defines
items stored in an inventory. At the most

general level the most important functional
detail is the entry and removal of items. As
refinement progresses simple entry and removal
may be augmented by including item re-order
and supplier interaction both concealed from the
inventory item’s client who sees only entry and
removal. The supplier interaction details are

encapsulated within the inventory item’s

responsibilities retaining the cohesion of the
class’s purpose (its identity). And the description
of the inventory item exhibits correctness at
either level of detail with and without the
supplier interaction elaboration.

Cohesion is a quality property reflecting a
consistent responsibility distribution in a field of
system components. (Zuse 1997) Since every
object “expects” the objects around it to fulfill
their responsibilities to contribute to the whole
model, each object is in itself free to be single-
minded in its focus on its own purpose. This is

the result of well-chosen classes. This
independent sufficiency accentuates the
divisibility of function in terms of each object’s

individual purpose, its identity, and the clarity
with which its purpose is exposed to the rest of
the community of objects in the system. The
single-mindedness that results also increases

the feasibility of object interaction
rearrangement enabling an overall change in
system function while almost every class’s
individual purpose remains fixed. The
independent sufficiency of each object’s inner
workings couples with the system-wide

interdependency of object cooperation to

promote a texture exhibiting a sense of system
connectedness, elegance.

Encapsulation is a design quality reflected
directly in the nature of the object-oriented

ontology as objects encapsulate both their data
and behavioral attributes. Encapsulation clearly
delineates who is allowed to manipulate system
information and who is not. Object data and
behavior are only accessible (invoke-able) via
the published services defined for each object by
its class. When sustained as a discipline this

boundary universally designates the object as
the finest granule of modularization. (Scott
2006) This principle eliminates the possibility of
“side effects” where system state changes occur
in any manner other than the “contractual”

prescription defined in the object’s service

interface. The isolation of the inside of the object
from the outside allows both to evolve without
servitude to the implementation of the other
(e.g. pursuing efficiency) as an object is
obligated only through the published
responsibilities in its class’s services.

Extensibility is the property of design quality

most important in pursuing systems with
sustainability essential to cost of ownership
economy. This is the vehicle for seamless
unfolding in system evolution. Extensibility
juxtaposes the potential for new functionality
with the effort required to achieve it. (van Vliet
2008). In the object-oriented paradigm class

plays the pivotal role by empowering instance
and inheritance relationships.

Multiplicity is achieved through instance
propagation, progeny. Each instance is
completely interoperable in any combination
with its sibling objects as well as acting as an

instance of any ancestor class.
Interchangeability both enables and reinforces
modularization.

Evolution or unfolding is accomplished as class
definitions are refined and specialized in their
child classes – the relationship called
inheritance. When a child class extends the

scope of the data and behavioral attributes of its
parent it honors the pattern set out in the parent

without contradiction. Polymorphism
compensates (through dynamic binding) for any
overridden methods. This extension proceeds
without any impairment of correctness because
the interfaces defined in the parent class must

be supported in each child class. The parent to
child unfolding specializing structure and
behavior results in an unbroken thread that
binds each class to its ancestry and projects an
identity down through the generations of class.

Information Systems Education Journal (ISEDJ) 13 (1)
ISSN: 1545-679X January 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 62

www.aitp-edsig.org /www.isedj.org

Modularization along with cohesion expresses
“divide and conquer” problem solving
augmented by the flexibility of configuring and
reconfiguring objects as cooperating agents.

Modularization also supports scale permitting the
composition of subsystems of varying scope that
hold details in abeyance until they require focus.
(Baldwin and Clark 2000) Enlightened module
design exposes the solution structure envisioned
by the modeler and publishes intentions for
further extension by separation of concerns and

isolation of accidents of implementation. (Brooks
1987) The OO paradigm provides ample facility
for defining modules of any size and scope while
aggregating and/or nesting their interfaces
through deliberate information hiding. The

granularity enabled through modularization may

be applied to facilitate the modeler’s formulation
of structure as well as the perspective to aid
stakeholder recognition and understanding.

Correctness in software engineering is often
narrowly defined as computing the desired
function. (Pollack 1982) Thriving Systems
Theory frames this property upon two outcomes:

1) validation, the clarity and fidelity of the
represented understanding of system
characteristics, and 2) verification, the
completeness and effectiveness of model feature
testing both individually and in composition.

Validation depends on the fidelity of the
unfolding process; that through the stages of

stepwise refinement the “essence” of system
characteristics are brought forward maintaining
their integrity. (Brooks 1987) Modularization
aids in cataloging and focusing on individual
essential characteristics. Correctness is the only
choice property that directly supports itself!

Correctness must be a priority at each stage as
experience shows that correctness shortcomings
grow more and more expensive to rehabilitate
as evolution progresses – notice “rehabilitate,”
to restore to normal life.

Verification depends on the effective testability
of each choice to certify it as “consistent with

stakeholder understanding.” Modularization
enables the verification of individual choices or

modules. Then relying on the correctness inside
modules verification can turn to the certification
of behaviors resulting from composition of
function. Experience often leads to dependable
patterns of classes or modules applicable or

adaptable to recurring modeling tasks.
Verification in these situations can focus on
known areas of fragility/risk limiting the effort
required to reach a desired confidence level of
reliability.

Transparency is evident structure, revealing
how things fit and work together. (Kaisler 2005)
In the OO ontology “fit together” and “work
together” are defined by the structural and

behavioral relationships. Individual objects may
represent clearly delineated and encapsulated
choices, but their cooperation is defined by
relationships.

Inheritance explains the structural relationship
of classes through the propagation of data and
behavioral attributes. Inheritance not only

propagates attributes, but also enables a class
hierarchy’s capacity for exhibiting similarity and
difference between parent and child classes.
That which is similar (in fact identical) inherited
by the child class is assumed and becomes in

effect familiar – requiring no reiteration. This

“folding” of that which is not changed avoids
clutter in the child class description, but may be
readily reviewed in the parent.

The behavioral relationships of association,
message passing, and polymorphism explain the
predictable patterns of communication and
action. Association uses the property of identity

to designate membership, ownership, and
accessibility among objects. Message passing
provides the mechanism for cooperating action
between objects providing a disciplined conduit
through the encapsulating boundary of objects
by using services to convey intention,
information, and reaction. Polymorphism allows

the abstraction of intention by using the same
service name to evoke distinct behaviors from
objects of different classes. The identical service
names in classes with different methods directly
realize the metaphorical abstraction of object
behavior where at one level of abstraction the

behaviors are the same and at a more detailed
level of abstraction their behaviors are distinct.

Composition of Function - As a fundamental
tool for managing complexity humans regularly
attempt to decompose problems, issues, or
tasks into parts that either in themselves are
sufficiently simple to permit direct solution or

can through recursion be subdivided
successively until they become sufficiently

simple. This is a defining aspect of
modularization. When the conception of a part
also anticipates reuse then the part takes on a
larger significance. The combination of
specifying a choice consistent with the essence

of system characteristics and then designing the
choice as an interchangeable component in
multiple super-ordinate choices is a step toward
elegance. Reusable choices represent an
understanding of the essence of the system at a
deeper level than an individual application. They

Information Systems Education Journal (ISEDJ) 13 (1)
ISSN: 1545-679X January 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 63

www.aitp-edsig.org /www.isedj.org

represent awareness of the intention, perhaps
even the philosophy of the system domain.

Composition of function as a property of design
quality is realized in model features that

facilitate the extension or retargeting of the
model in the future. It is the capacity to combine
simple functions to build more complicated ones
(Meyer 1988). The retargeting capability may be
provided directly to the users of the system in
the form of a programmable interface. A choice
achieving the principle of composition of function

is marked not only by the function it initially
provides the user, but also by the functionality it
anticipates and supports even (perhaps) before
the stakeholders realize the need for the
capability.

Identity is at the root of recognition and is

another property of design quality not usually
defined in software engineering. In the physical
world identity is literal based upon direct
sensorimotor experience: by sight or touch and
in some cases by sound or smell – a human
experience of the “real” world. In the object-
oriented paradigm identity is an object property.

(Khoshafian and Copeland 1986) Existence is
sufficient for object identification.

In other paradigms identification is achieved
through possessed characteristics (attributes)
that contribute to distinct recognition by a
process of intersecting categorizations or the

introduction of an artificial characteristic whose

sole purpose is to support discrimination. Aside
from the fact that these approaches to
identification require some overhead (either
mental or computational) they are simply not
natural to humans. Humans perceive objects as
possessing characteristics rather than

characteristics defining objects. The former
begins with certain uniqueness and progresses
toward explanation while the latter begins with
uncertainty and attempts to deduce uniqueness.

Characteristics are not unimportant.
Classification is essential in most human
problem solving activities. And recognition is

virtually always accelerated by the
discrimination that categorizing characteristics

(attributes) provide. And most importantly in the
absence of physical experience categorization
through characteristics is the only choice. Class
structure and the instance relationship are vital
to identity – an object belongs to “this” class

and not to “another.” Described both by what an
object “knows” (data attributes) and what it
“knows how to do” (behavioral attributes)
classes form a categorization cornerstone of the
object-oriented ontology. But to model both the
static and dynamic dimensions of reality

(association and message passing) each object
must be uniquely distinguishable.

Scale’s effect on design quality is reflected in
common idioms: “You can’t see the forest for

the trees!” and “Let’s get a view from 10,000
feet.” They reflect the importance of context in
recognition and decision-making. Scale captures
the modeling imperative that all choices must be
kept in perspective because it is not sufficient to
consider a choice only in the microcosm of itself,
as it must also participate in the connectedness

of the whole. By achieving scale, a system
designer provides differing granularities of
comprehensibility to suit the requirements of a
variety of observers (Waguespack 2010).

The relationships provided in the object-oriented
paradigm (association, inheritance, instance,

message passing, and even polymorphism)
provide ample means for designing collections of
cooperating choices that are nested, intersect,
or partition the full field of functionality essential
to the model. These may be called variously
subsystems, modules, or sub-modules. In those
cases where the actual structure of a collection

must be rendered obscure, classes and objects
can be devised to serve as facades or agents to
“keep up appearances.” Coupled with stepwise
refinement, as it is, scale is used to focus
modeler and stakeholder attention to achieve
the contextual understanding needed to address
constituent concerns within the whole.

User Friendliness is another property of design
quality more often considered aesthetic. It is a
combination of: ease of learning; high speed of
user task performance; low user error rate;
subjective user satisfaction; and, user retention
over time (Shneiderman 1992). Its impact may

be easiest to consider in its absence. A modeling
choice that is “unfriendly” to stakeholders is
confusing, hard to comprehend, unwieldy, and
perhaps worst of all, of indeterminate
correctness. That which defies understanding
cannot be determined to be correct. Satisfaction
is cumulative. The sensitivity to the

stakeholders’ conceptions of the essence of the
system to be modeled is key to the stakeholders’

sense of comfort, familiarity, and expectation.

The object-oriented paradigm excels in its
facility to represent systemst preserves the
stakeholders’ ability to recognize “their” system.
Authoring object-oriented models whose

elements correspond almost one-to-one with the
real-world concepts and entities results in
intrinsically better stakeholder understanding
and interaction. The casting of “objects” in the
models that have direct counterparts in the
stakeholders’ experience exhibits a

Information Systems Education Journal (ISEDJ) 13 (1)
ISSN: 1545-679X January 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 64

www.aitp-edsig.org /www.isedj.org

fundamentally friendly quality. It respects the
stakeholders’ perceptions and it welcomes them
into the processes of verification and validation
that are intrinsic to correctness. The unified

structure of “what an object knows” and “what
an object knows how to do” correlates so
naturally with observers of business models or
process models that the natural clarity in that
communication improves understanding and
avoids mistakes in understanding,
communication, or implementation.

And in a serendipitous quirk of language (or a
profound emergence of the deep meaning of
metaphors) Alexander’s term from which the
principle here, user friendliness, is derived is
roughness. (Alexander 2002) Something has to

have a certain degree of roughness if one is to

be able to effectively grasp it!

Patterns describe versatile templates to solve
particular problems in many different situations
(Gamma et al. 1995). All entities in the object-
oriented paradigm propagate from classes,
predefined templates, or “cookie cutters.” This
protocol organizes what otherwise would be a

bewildering multiplicity of individual
computational entities to consider. It becomes
less complicated in the understanding that the
potential of any number of objects boils down to
understanding the class(s) of which they are
instances. Each instance mimics perfectly the
form and function of every other of its siblings,

members of that class. Class hierarchies,
generations of parent-child class definitions,
defining “nearly the same” and “different in
specific ways” relationships significantly lessen
the apparent complexity that considering only
individual entities entails. Class hierarchies

define the path of unfolding for all to see – a
depiction of the analysis, solution, and design
philosophies at work.

Patterns is the property of design quality that
channels change (unfolding). A pattern
foreshadows where and how change will need to
be accounted for. Patterns of the form

popularized in (Coplein, 1995) document
commonly encountered design questions offering

carefully considered advice and cautions. Their
patterns are paradigm and modeling language
independent. However, it is not surprising that
many examples using patterns are presented in
OO dialects. The reason is simple. The

integration of instance, inheritance, message
passing, and polymorphism relationships is an
ideal toolset for expressing patterns with a
balance of prescription and adaptability – a
balance not as conveniently achieved in dialects
based on pre-object-oriented paradigms.

Programmability in software engineering is
often considered a feature rather than a
property of design quality – the capability within
hardware and software to change; to accept a

new set of instructions that alter its behavior
(Birrell and Ould 1988). It is closely allied with
extensibilityand addresses the need for models
to welcome the future. What largely separates
information systems from other human-made
mechanisms is the degree of adaptability that
they offer to deal gracefully with change. Unlike

most appliances that support a very narrow
range of use (albeit with great reliability),
contemporary information systems are expected
to provide not only amplification of effort as in
computation, but also amplification of

opportunity in terms of different approaches to

business or organizational questions.
Contemporary information systems are expected
to demonstrate that they can reliably
accommodate change. As with extensibility,
successful accommodation of change relies on
an understanding of the fundamental options
governing the structure and behavior within a

particular domain. The OO ontology offers
powerful tools (structural and behavioral
relationships, e.g. inheritance and
polymorphism) to service the elements of
change without fracturing a skeletal foundation
of base classes characterizing the domain.

What sets programmability apart from

extensibility is a facility that permits altering the

systems behavior without having to reconstruct
choices – that is to say that the system’s
behavior can be sensitive to the context
determined by a “user” in “real time.” “Real
time” is relative to the “user’s” role (e.g.

developer or end user, etc.). This versatility is
not accidental but architectural. Choices may
provide an interface language for end users that
permits selections of system actions to meet an
immediate “real-time” need – an interface as
simple as a light switch or as complex as a
natural language.

Reliability is a property of design quality more
often associated with implementation than
design. It is the assurance that a product will

perform its intended function for the required
duration within a given environment (Pham
2000). Objects facilitate modularized testing and
quality assurance. A certified class produces

certified objects (which is not to say that
certification is easy or inexpensive). As long as
classes are protected from dynamic modification
in deployment there is no need to be concerned
with the inner workings of their objects. As long
as objects are truly encapsulated they conform

to the intention of their class. In development

Information Systems Education Journal (ISEDJ) 13 (1)
ISSN: 1545-679X January 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 65

www.aitp-edsig.org /www.isedj.org

testing proceeds incrementally as new classes
are added or rearranged in their collaboration.
Once deployed testing is relegated to their
interactions rather than their definition. Testing

is compartmentalized and does not explode
exponentially when additional classes or
functionality within a class is added.

Reliability in design reflects an austerity that
confines design elements to the essentials of the
stakeholder’s intentions. When design or
implementation decisions involve additional

constructs due to technology or compatibility,
these accidents of implementation must be
clearly delineated so as not to imply that they
are essence rather than accident. This clear
distinction will protect future system evolution

from mistaking accidental “baggage” as

stakeholder intentions.

Elegance is perhaps the epitome of subjective
quality assessment that clearly sets choice
properties of design quality apart from
traditional software engineering metrics.
“Pleasing grace and style in appearance or
manner,” that’s how the dictionary expresses

the meaning of “elegance”. (Oxford English
Dictionary)

 “A designer knows he has achieved
perfection not when there is nothing left to
add, but when there is nothing left to take
away.” (Raymond 1996)

Models composed of choices that are consistent,

clear, concise, coherent, cogent, and
transparently correct exude elegance and
nurture cooperation, constructive criticism and
stakeholder community confidence. These are
models that confess to their own shortcomings
because their clarity obscures nothing, even

omissions. These are models that satisfy
stakeholders. They appear “intuitively obvious.”
The clarity of their composite structure is so
self-evident that they seem “simple.” The use of
the OO paradigm to construct a collection of
“building blocks” in the form of a class library to
encapsulate architectural design decisions

facilitates this impression of what is “intuitively
obvious.” Using well-conceived library elements

becomes so second nature, so natural, that the
builder perceives the blocks as the natural
primitives of construction rather than
constructed artifacts.

Elegance largely proceeds from the efficient and

effective representation of essential system
characteristics along with those features
emerging out of design decisions, accidents of
implementation, that are laid out with equal
clarity for separate consideration. This is the

field effect of the beneficial, integrated, mutual
support of strong choices described in Thriving
Systems Theory. (Waguespack 2010b)

6. INTEGRATING THE DESIGN QUALITY

LEARNING UNIT IN AN OBJECT-ORIENTED
MODELING SYLLABUS

For the past six semesters the design quality
learning unit presented here is woven into two
object-oriented modeling syllabi: 1)
undergraduate systems analysis and design and
2) masters level object-oriented systems

engineering. The unit content appears
throughout the pedagogy of modeling using
UML-2 syntax.

After initially presenting the object-oriented
paradigm using the ontology to establish its
vocabulary (see Appendix B), we present use

case, class, and sequence diagramming
establishing the syntax and the expression of
semantics in UML-2. During this UML
presentation we repeatedly allude to the design
quality properties through the syntax. Small
student groups and then individuals conduct a
series of modeling exercises based on

requirement narratives establishing the
students’ grasp of UML syntax. On that
foundation the explanation of design quality, the
enumeration of the fifteen properties, and the
corresponding application of OO ontology
elements to strengthen the properties precede a

final individual course modeling project. The

design quality discussion provides a quality
vocabulary for one-on-one consultations
between teacher and student as each develops
the object-model of their final project. In this
one-on-one context each student’s specific
design decisions are discussed and evaluated in

relationship to the design quality properties, an
opportunity for individualized, reinforced
learning and/or suggested improvements.

The deeper subtleties of design quality present a
challenge for some students particularly in a
compressed format. The “light doesn’t go on”
right away for all students. However, the

integration of the ontology and design quality

property based vocabulary establishes a
touchstone that returning students report helps
them “to name” the “quality elements” they
rediscover in succeeding coursework and
professional practice.

In your own curricular situation the distribution

of learning unit elements may span more than
one course (some addressed in OO
programming, requirements engineering, or
database design, etc.), be rearranged to suit

Information Systems Education Journal (ISEDJ) 13 (1)
ISSN: 1545-679X January 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 66

www.aitp-edsig.org /www.isedj.org

your modeling tools, or be adjusted to your
course sequencing with context-appropriate
examples. Regardless, the learning unit
components are flexible and robust enough to

suit various specific program needs.

7. ACKNOWLEDGEMENTS

Thanks to helpful referees. Special thanks are
due my colleagues David Yates and Bill Schiano
at Bentley University for their insightful
discussions and comments on these ideas.

8. REFERENCES

AACSB (2010). Eligibility Procedures and
Accreditation Standard for Business
Accreditation. Retrieved July 16, 2010 from

http://www.aacsb.edu/accreditation/AAACSB
-STANDARDS-2010.pdf

Alexander C, (2002). The Nature of Order An

Essay on the Art of Building and the Nature
of the Universe: Book I - The Phenomenon
of Life, Berkeley, California: The Center for
Environmental Structure, p. 119

Baldwin, C. Y., and Clark, K. B. (2000). Design
Rules, Volume 1: The Power of Modularity.
The MIT Press, Cambridge, MA.

Beck K., Beedle M., van Bennekum A., Cockburn
A., Cunningham W., Fowler M., Grenning J.,
Highsmith J., Hunt A., Jeffries R., Kern J.,
Marick B., Martin R.C., Mellor S., Schwaber

K., Sutherland J., & Thomas D. (2010).
Manifesto for Agile Software Development.
Retrieved July 12, 2010 from

agilemanifesto.org

Birrell, N. D., and Ould, M. A. (1988). A Practical
Handbook for Software Development.
Cambridge University Press, Cambridge, UK.

Brooks F. P. (1987), "No Silver Bullet: Essence
and Accidents of Software Engineering,"

Computer, Vol. 20, No. 4, pp 10-19.

Brooks, F. P. (1995). The Mythical Man-Month:
Essays on Software Engineering (2ed).
Addison-Wesley, Boston, MA.

Brooks, F. P. (2010). The Design of Design:
Essays from as Computer Scientist. Addison-
Wesley, Pearson Education, Inc., Boston,

MA.

Cassel L., Clements A., Davies G., Guzdial M.,
McCauley R., McGettrick A., Sloan B.,
Snyder L, Tymann P., & Weide B.W.,
(2008). Computer Science Curriculum 2008
An Interim Revision of CS2001. Association
of Computing Machinery (ACM), & IEEE

Computing Society (IEEE-CS)

Coplien J and Schmidt D (Eds) (1995). Pattern
Languages of Program Design, Addison-
Wesley, Reading, MA, USA

Crosby,P. B., (1979) Quality is Free, McGraw-

Hill, New York, NY, USA.

Dijkstra, E. (1968). “GOTO Statement
Considered Harmful.” Communications of the
ACM, 11(3), 147-148

Diaz-Herrara, J.L., & Hilburn, Thomas B. (eds.)
(2004). Software Engineering 2004:
Curriculum Guidelines for Undergraduate

Degree Programs in Software Engineering,
IEEE Computing Society (IEEE-CS),
Association of Computing Machinery (ACM)

Deming, W. E. (1993), The New Economics for
Industry, Government, Education (2ed),
Cambridge Press: MIT, Cambridge, MA, USA

Denning, P. J. (2004). “The Great Principles of
Computing,” Ubiquity, 4(48), 4–10

EQUIS (2010). EQUIS Standards and Criteria.
Retrieved July 16, 2010 from
http://www.efmd.org/attachments/tmpl_1_a
rt_041027xvpa_att_080404qois.pdf

Gamma, E., Helm, R., Johnson, R., and

Vlissides, J. (1995). Design Patterns:
Elements of Reusable Object-Oriented
Software. Addison-Wesley, Reading, MA.

Hoyle, D. (2009). ISO 9000 Quality Systems

Handbook. Butterworth-Heinemann
(Elsevier); 6 ed. Burlington, MA, USA

ISO 9000 (2005), http://www.iso.org/iso/qmp

Juran, J. M., (1999). Quality Control Handbook
(6ed), McGraw-Hill, New York, NY, USA

Kaisler, S. H. (2005). Software Paradigms.
Wiley-Interscience, Hoboken, NJ.

Khoshafian, S. N., and Copeland, G. P. (1986).
“Object identity,” Proceedings of ACM

Conference on Object Oriented Programming
Systems Languages and Applications,
Portland, OR, November 1986, 406-416.

Lunt, B.M., Ekstrom, J.J., Gorka, S., Hislop, G.,

Kamali, R., Lawson, E., LeBlanc, R., Miller,
J., & Reichgelt, H. (eds.) (2008).
Information Technology 2008: Curriculum

Guidelines for Undergraduate Degree
Programs in Information Technology,
Association of Computing Machinery (ACM),
IEEE Computing Society (IEEE-CS)

Meyer, B. (1988). Object-oriented Software
Construction. Prentice Hall, New York, NY.

http://www.aacsb.edu/accreditation/AAACSB-STANDARDS-2010.pdf
http://www.aacsb.edu/accreditation/AAACSB-STANDARDS-2010.pdf
http://www.efmd.org/attachments/tmpl_1_art_041027xvpa_att_080404qois.pdf
http://www.efmd.org/attachments/tmpl_1_art_041027xvpa_att_080404qois.pdf

Information Systems Education Journal (ISEDJ) 13 (1)
ISSN: 1545-679X January 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 67

www.aitp-edsig.org /www.isedj.org

Pham, H. (2000). Software Reliability. Springer,
Berlin, Germany.

Pollack, S. (Ed.). (1982). Studies in Computer
Science. Mathematical Association of

America, Washington, DC.

Raymond, E. S. (1996). The New Hacker's
Dictionary, 3rd ed. The MIT Press,
Cambridge, MA.

Sales and Supply of Goods Act 1994, Ch 35,
Legislation of Her Majesty’s Government,
The National Archives, UK,

http://www.legislation.gov.uk/ukpga/1994/3
5/introduction

Scott, M. L. (2006). Programming Language

Pragmatics, 2nd ed. Morgan Kaufmann,
Maryland Heights, MO.

Shackelford, R., Cross, J.H., Davies, G.,

Impagliazzo, J., Kamali, R., LeBlanc, R.,
Lunt, B., McGettrick, A., Sloan, R., & Topi,
H., (2005). Computing Curricula 2005: The
Overview Report, Association for Computing
Machiner (ACM), The Association of
Information Systems (AIS), The Computer
Society (IEEE-CS)

Shneiderman, B. (1992). Designing the User
Interface: Strategies for Effective Human-
Computer Interaction, 2nd ed. Addison-
Wesley, Reading, MA.

Soldan, D., Hughes, J.L.A., Impagliazzo, J.,
McGettrick, A., Nelson, V.P., Srimani, K., &
Theys, M.D. (eds.) (2004). Computer

Engineering 2004: Curriculum Guidelines for
Undergraduate Degree programs in
Computer Engineering, IEEE Computer
Society (IEEE-CS), Association for
Computing Machinery (ACM)

Topi, H., Valacich, J.S., Wright, R.T., Kaiser,
K.M., Nunamaker, J.F. Jr., Sipior, J.C., & de
Vreede, G.J. (eds.) (2010). IS2010:
Curriculum Guidelines for Undergraduate

Degree Programs in Information Systems,
Association for Computing Machinery (ACM),
Association for Information Systems (AIS)

Van Vliet, H. (2008). Software Engineering:
Principles and Practice, 3rd ed. Wiley,
Hoboken, NJ.

Waguespack, L. J. (2008). “Hammers, Nails,

Windows, Doors and Teaching Great
Design,” Information Systems Education
Journal, 6 (45). http://isedj.org/6/45/.
ISSN: 1545-679X

Waguespack, L. J. (2009). “A Two-Page “OO
Green Card” for Students and Teachers,”

Information Systems Education Journal,
7 (61). http://isedj.org/7/61/. ISSN: 1545-
679X

Waguespack, L. J., Schiano, W. T., Yates, D. J.
(2010a). “Translating Architectural Design
Quality from the Physical Domain to
Information Systems,” Design Principles and

Practices: An International Journal, 4, 179-
194

Waguespack, L. J. (2010b). Thriving Systems
Theory and Metaphor-Driven Modeling,
Springer, London, U.K.

Waguespack, L. (2011). “Design, The “Straw”
Missing From the “Bricks” of IS Curricula,”

Information Systems Education Journal, 9(2)
pp 101-108. http://isedj.org/2011-9/ ISSN:
1545-679X

Zuse, H. (1997). A Framework of Software
Measurement. Walter de Gruyter, Berlin,
Germany.

http://isedj.org/6/45/
http://isedj.org/7/61/

Information Systems Education Journal (ISEDJ) 13 (1)
ISSN: 1545-679X January 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 68

www.aitp-edsig.org /www.isedj.org

Appendix A – Choice Properties (Waguespack 2010b)

Choice

Property

Modeling

Action
Practical Action Definition

1
Stepwise

Refinement
elaborate develop or present (a theory, policy or system) in detail

2 Cohesion Factor express as a product of factors

3 Encapsulation encapsulate
enclose the essential features of something succinctly by a protective

coating or membrane

4 Extensibility extend render something capable of expansion in scope, effect or meaning

5 Modularization modularize
employing or involving a module or modules as the basis of design

or construction

6 Correctness align put (things) into correct or appropriate relative positions

7 Transparency expose reveal the presence of (a quality or feeling)

8
Composition of

Function
assemble

fit together the separate component parts of (a machine or other

object)

9 Identity identify establish or indicate who or what (someone or something) is

10 Scale focus
(of a person or their eyes) adapt to the prevailing level of light

[abstraction] and become able to see clearly

11 User Friendliness accommodate fit in with the wishes or needs of

12 Patterns pattern give a regular or intelligible form to

13 Programmability generalize make or become more widely or generally applicable

14 Reliability normalize
make something more normal, which typically means conforming to

some regularity or rule

15 Elegance coordinate
bring the different elements of (a complex activity or organization)

into a relationship that is efficient or harmonious

Information Systems Education Journal (ISEDJ) 13 (1)
ISSN: 1545-679X January 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 69

www.aitp-edsig.org /www.isedj.org

Appendix B - OO Green Card (Waguespack 2009)

Information Systems Education Journal (ISEDJ) 13 (1)
ISSN: 1545-679X January 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 70

www.aitp-edsig.org /www.isedj.org

