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Abstract  

 
Recent IS curriculum guidelines compress software development pedagogy into smaller and smaller 
pockets of course syllabi. Where undergraduate IS students once may have practiced modeling in 
analysis, design, and implementation across six or more courses in a curriculum using a variety of 
languages and tools they commonly now experience modeling in four or fewer courses in at most a 

couple of paradigms. And in most of these courses their modeling decisions focus on acceptable 
syntax rather than principles representing and communicating concepts of quality in information 
systems. Where learning design quality may once have been an osmotic side effect of development 
practice it must now be a conscious goal in pedagogy if it is to be taught at all. This paper presents a 
learning unit that teaches design quality in object-oriented models. The focus on object-oriented 
models allows the learning to permeate analysis, design, and implementation enriching pedagogy 

across the systems development life cycle. The quality perspective presented is more expansive than 
that usually found in software engineering, the traditional “objective” notion of metrics, and integrates 

aspects of aesthetics, the more subjective phenomena of satisfaction. This learning unit is intended as 
an adaptable framework to be tailored to the coursework and the overall objectives of specific IS 
programs.  
 
Keywords: design quality, design, OO modeling, IS discipline, IS curricula, IS pedagogy 

 
 

1.  INTRODUCTION 

Over the past decade computing curricula have 
been repartitioned with the permeation of 
computing across disciplines and society. 
(Shackelford, Cross, Davies, Impagliazzo, 

Kamali, LeBlanc, Lunt, McGettrick, Sloan & Topi, 
2005) There are now 5 major computing 
curriculum guidelines that subdivide computing. 

(Soldan, Hughes, Impagliazzo, McGettrick, 
Nelson, Srimani & Theys 2004, Cassel, 
Clements, Davies, Guzdial, McCauley, 

McGettrick, Sloan, Snyder, Tymann & Weide, 
2008, Diaz-Herrara & Hilburn, 2004, Lunt, 
Ekstrom, Gorka, Hislop, Kamali, Lawson, 
LeBlanc, Miller & Reichgelt, 2008, Topi, Valacich, 
Wright, Kaiser, Nunamaker, Sipior & de Vreede, 
2010) The co-location of IS curricula in schools 
of business further exacerbates the pressure on 

pedagogy as accreditation bodies further 

constrain the scope of coursework by 
compressing systems development into smaller 
and smaller pockets of course syllabi. (AACSB 
2010, EQUIS 2010) Where undergraduate IS 
students once may have practiced modeling in 

analysis, design, and implementation across six 
or more courses in a program using a variety of 
languages and tools they commonly now 
experience modeling in four or fewer courses in 

at most a couple of paradigms. (Waguespack 
2011) And in most of these courses their 

modeling decisions focus on acceptable syntax 
rather than principles representing and 
communicating concepts of quality in 
information systems. Where learning design 
quality may once have been an osmotic side 
effect of development practice it must now be a 
conscious goal in pedagogy if it is to be taught 

at all.  
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At the same time industry and academia persist 
in their lament over the paucity of focus on 
quality in system design first sounded more than 
four decades ago (Dijkstra, 1968) and echoing 

consistently since as in (Denning, 2004, Brooks 
1995, 2010, Beck, Beedle, van Bennekum, 
Cockburn, Cunningham, Fowler, Grenning, 
Highsmith, Hunt, Jeffries, Kern, marick, Martin, 
Mellor, Schwaber, Sutherland, & Thomas 2010) 

This paper presents a learning unit that teaches 
design quality within the object-oriented 

paradigm. The focus on OO models allows the 
learning to permeate analysis, design, and 
implementation enriching pedagogy across the 
systems development life cycle. We amplify a 
traditional “objective” notion of systems quality 

(i.e. metrics usually found in software 

engineering) by integrating the more subjective 
phenomena of satisfaction, aesthetics. This 
learning unit is adaptable to the coursework and 
objectives of specific IS programs. The paper 
presents: a brief overview of design quality, 
properties to assess design choices, the object-
oriented ontology; and a discussion of how each 

of the design choice properties express quality 
through the use of object-oriented modeling 
constructs. Finally, there is a description of how 
the learning unit has been integrated in object-
modeling syllabi with a comment on its efficacy. 

2. WHAT IS DESIGN QUALITY? 

Quality is an elusive concept, shifting and 

morphing on a supposed boundary between 
science and art: objective, engineering 
characteristics versus subjective, aesthetic 
observer or stakeholder experience. 
International standards of quality reflect the 
challenge of defining quality by offering a variety 

of perspectives (as gathered here by Hoyle 
2009): 

 A degree of excellence (Oxford English 
Dictionary) 

 Freedom from deficiencies or defects 
(Juran 2009) 

 Conformity to requirements (Crosby 

1979) 

 Fitness for use (Juran 2009) 

 Fitness for purpose (Sales and Supply of 
Goods Act 1994) 

 The degree to which the inherent 
characteristics fulfill requirements (ISO 
9000:2005) 

 Sustained satisfaction (Deming 1993) 

(Waguespack 2010b) asserts that the quality of 
systems revolves around two primary concepts: 
efficiency and effectiveness defined as follows 
(New Oxford American Dictionary): 

Efficiency [noun]- the ratio of the useful work 
performed […] in a process to the total energy 
[effort] expended 

Effectiveness [noun]- successful in producing a 
desired or intended result 

These two concepts appear primarily 
quantitative and therefore objective. In and of 

themselves they may well be. Portraying 
efficiency using a convenient interpretation of 
“work” and “effort” is genuinely objective. “How 
many” or “how much” or “how often” often 

depicts efficiency. But, when we ask “Is it 
enough?” apparent objectivity fades away.  

Likewise, the supposed objectivity of 
“effectiveness” relies upon the tenuous phrase, 
“desired or intended result” defined as  

Intend [noun]- have (a course of action) as 
one’s purpose or objective; plan 

Effectiveness (like efficiency) is a 
correspondence between a system and its 

stakeholders’ intentions. Assessing effectiveness 
depends on comparing “what is” to “what is 
intended.” While the former may be expressed 
quantitatively the latter presents challenges: 
clarity of conception, mode of representation, 

scope of contextual orientation, and fidelity of 
communication to name but a few. Indeed the 

notion of effectiveness is complicated when we 
contemplate identifying and quantifying the 
stakeholder(s) intentions objectively. 

The indefiniteness or imprecision that 
characterizes stakeholder intention(s) is 
generally not a concern if an observer is asked 

to assess the beauty of something – an 
assessment generally conceded to be subjective. 
A detailed or even explicit intention is not 
expected in assessing beauty – beauty is most 
often perceived as an experience of observation 
rather than a system analysis. Most people 
commonly accept beauty as subjective and 

exempt from specific justification or explanation 
– “Beauty is in the eye of the beholder.” and 
“You’ll know it [beauty] when you see it.” This 
absence of or difficulty in forming a quantitative 
justification of beauty is often the basis for 
categorizing artifacts or processes as products of 
art rather than of engineering. And therein lies 

the presumption that the aspects of design 
quality that we label objective and those we 
label subjective are somehow dichotomous. They 
in fact teeter between objectivity and 
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subjectivity depending on the degree of 
granularity that observers choose to employ in 
inspecting not only the artifact but also their 
own disposition toward satisfaction relative to it. 

3. AN ARCHITECTURAL INTERPRETATION 
OF QUALITY DESIGN 

We will never be able to absolutely define design 
quality because of the relativistic nature of 
satisfaction in the observer experience. But, our 
students must still face design choices. So, as IS 
educators we must provide a framework for 

them to develop and refine their individual 
perceptions and understanding of systems 
quality. The taxonomy of design choice 
evaluation proposed in Waguespack (2008, 

2010b), the 15 choice properties, is just such a 
framework. (See Appendix A.) Choice properties 

derive from Christopher Alexander’s writings on 
design quality in physical architecture. 
(Alexander 2002)  

Choice properties address the process of 
building, the resulting structure, and the 
behavior of systems as cultural artifacts. Every 
design decision, choice, contributes to the 

aggregate observer experience: either positively 
or negatively. Each choice exhibits the 15 
properties with varying strengths or influence 
that impact the resulting observer satisfaction. 
The confluence of property strength results from 
the coincidence of the designer’s choice with the 

collective intention of the stakeholders. The 

combination of all choices with their respective 
property strengths results in the overall, 
perceived design quality.  Many of the properties 
are design characteristics long recognized in 
software engineering (i.e. modularization, 
encapsulation, cohesion, etc.). But several reach 

beyond engineering to explain aesthetics, the art 
(i.e. correctness, transparency, user friendliness, 
elegance, etc.). An example of the effectiveness 
of choice properties in explaining the design 
quality of production systems is reported in 
(Waguespack, Schiano & Yates 2010a). 

4. THE ONTOLOGY OF THE OBJECT-

ORIENTED PARADIGM 

Illustrating design decisions in the object-
oriented paradigm can be a challenge. The 
idiosyncrasies of OO programming syntax often 
obscure the intention and/or the result of a 
design decision. For that reason the learning unit 
presented here uses a paradigm description 

independent of programming language, the 
object-oriented ontology, found in (Waguespack 
2009) and excerpted in Appendix B. The 

graphical outline of the ontology is Figure 1 
below. 

 Figure 1 – Object-Oriented Ontology 

The ontology captures the elements of the 
object-oriented paradigm eschewing the 
obfuscation that usually occurs with 
programming language syntax examples. At the 
same time an experienced IS teacher can readily 

translate the ontological elements into a relevant 
programming dialect. 

5. CRAFTING OBJECT-ORIENTED MODELING 
CHOICES THAT STRENGTHEN PROPERTIES 

OF DESIGN QUALITY  

This section, the heart of the learning unit, 
enumerates the 15 choice properties as defined 

in Waguespack (2010b) illustrating how 
modeling choices in the object-oriented ontology 
can express design quality. In this space-limited 
discussion one choice property often references 
another reflecting the confluent nature of the 
design quality properties as Alexander defines 
them in physical architecture. (Alexander 2002) 

Stepwise Refinement (as the name implies) is 
an approach to elaboration that presumes a 
problem should be addressed in stages. The 
stages may represent degrees of detail or an 
expanding problem scope. (Birrell and Ould 

1988) In either case quality evidence of stepwise 

refinement is demonstrated by the cogent and 
complete representation of a design element at 
whatever level of detail or scope is set at each 
stage. To achieve this representation the 
modeling paradigm must support abstraction 
that allows generalization of the scope of 
interest and then the elaboration of that scope 

from one stage to the next. 

The class concept in OO provides this capability. 
Through the inheritance relationship a class can 
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represent the more abstract, general character 
of a model feature while expressing all the 
information and behavior needed at that level of 
abstraction: 1) what responsibilities the objects 

of this class fulfill, 2) what information they 
manage, and 3) what services this class’s 
objects provide the rest of the model. As the 
modeling stages progress greater specialization 
is achieved with child classes that redefine 
abstract behaviors: by adding data and/or 
behavioral attributes germane only at a lower 

level of abstraction, or by defining collaborations 
to support this class’s responsibilities. Stepwise 
Refinement can mimic the concept of “need-to-
know.” Only that detail required to “understand” 
the system at that abstraction level need be 

revealed or perhaps is not even chosen until the 

need arises. When the need does arise the detail 
may be added within the genealogy of the class 
preserving the cohesion of a class’s defined 
functional responsibility at the higher abstraction 
levels. 

As an example, consider a class that defines 
items stored in an inventory. At the most 

general level the most important functional 
detail is the entry and removal of items. As 
refinement progresses simple entry and removal 
may be augmented by including item re-order 
and supplier interaction both concealed from the 
inventory item’s client who sees only entry and 
removal. The supplier interaction details are 

encapsulated within the inventory item’s 

responsibilities retaining the cohesion of the 
class’s purpose (its identity). And the description 
of the inventory item exhibits correctness at 
either level of detail with and without the 
supplier interaction elaboration. 

Cohesion is a quality property reflecting a 
consistent responsibility distribution in a field of 
system components. (Zuse 1997) Since every 
object “expects” the objects around it to fulfill 
their responsibilities to contribute to the whole 
model, each object is in itself free to be single-
minded in its focus on its own purpose. This is 

the result of well-chosen classes. This 
independent sufficiency accentuates the 
divisibility of function in terms of each object’s 

individual purpose, its identity, and the clarity 
with which its purpose is exposed to the rest of 
the community of objects in the system. The 
single-mindedness that results also increases 

the feasibility of object interaction 
rearrangement enabling an overall change in 
system function while almost every class’s 
individual purpose remains fixed. The 
independent sufficiency of each object’s inner 
workings couples with the system-wide 

interdependency of object cooperation to 

promote a texture exhibiting a sense of system 
connectedness, elegance. 

Encapsulation is a design quality reflected 
directly in the nature of the object-oriented 

ontology as objects encapsulate both their data 
and behavioral attributes. Encapsulation clearly 
delineates who is allowed to manipulate system 
information and who is not. Object data and 
behavior are only accessible (invoke-able) via 
the published services defined for each object by 
its class. When sustained as a discipline this 

boundary universally designates the object as 
the finest granule of modularization. (Scott 
2006) This principle eliminates the possibility of 
“side effects” where system state changes occur 
in any manner other than the “contractual” 

prescription defined in the object’s service 

interface. The isolation of the inside of the object 
from the outside allows both to evolve without 
servitude to the implementation of the other 
(e.g. pursuing efficiency) as an object is 
obligated only through the published 
responsibilities in its class’s services. 

Extensibility is the property of design quality 

most important in pursuing systems with 
sustainability essential to cost of ownership 
economy. This is the vehicle for seamless 
unfolding in system evolution. Extensibility 
juxtaposes the potential for new functionality 
with the effort required to achieve it. (van Vliet 
2008). In the object-oriented paradigm class 

plays the pivotal role by empowering instance 
and inheritance relationships.  

Multiplicity is achieved through instance 
propagation, progeny. Each instance is 
completely interoperable in any combination 
with its sibling objects as well as acting as an 

instance of any ancestor class. 
Interchangeability both enables and reinforces 
modularization.  

Evolution or unfolding is accomplished as class 
definitions are refined and specialized in their 
child classes – the relationship called 
inheritance. When a child class extends the 

scope of the data and behavioral attributes of its 
parent it honors the pattern set out in the parent 

without contradiction. Polymorphism 
compensates (through dynamic binding) for any 
overridden methods. This extension proceeds 
without any impairment of correctness because 
the interfaces defined in the parent class must 

be supported in each child class. The parent to 
child unfolding specializing structure and 
behavior results in an unbroken thread that 
binds each class to its ancestry and projects an 
identity down through the generations of class.  
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Modularization along with cohesion expresses 
“divide and conquer” problem solving 
augmented by the flexibility of configuring and 
reconfiguring objects as cooperating agents. 

Modularization also supports scale permitting the 
composition of subsystems of varying scope that 
hold details in abeyance until they require focus. 
(Baldwin and Clark 2000) Enlightened module 
design exposes the solution structure envisioned 
by the modeler and publishes intentions for 
further extension by separation of concerns and 

isolation of accidents of implementation. (Brooks 
1987) The OO paradigm provides ample facility 
for defining modules of any size and scope while 
aggregating and/or nesting their interfaces 
through deliberate information hiding. The 

granularity enabled through modularization may 

be applied to facilitate the modeler’s formulation 
of structure as well as the perspective to aid 
stakeholder recognition and understanding. 

Correctness in software engineering is often 
narrowly defined as computing the desired 
function. (Pollack 1982) Thriving Systems 
Theory frames this property upon two outcomes: 

1) validation, the clarity and fidelity of the 
represented understanding of system 
characteristics, and 2) verification, the 
completeness and effectiveness of model feature 
testing both individually and in composition.  

Validation depends on the fidelity of the 
unfolding process; that through the stages of 

stepwise refinement the “essence” of system 
characteristics are brought forward maintaining 
their integrity. (Brooks 1987) Modularization 
aids in cataloging and focusing on individual 
essential characteristics. Correctness is the only 
choice property that directly supports itself! 

Correctness must be a priority at each stage as 
experience shows that correctness shortcomings 
grow more and more expensive to rehabilitate 
as evolution progresses – notice “rehabilitate,” 
to restore to normal life. 

Verification depends on the effective testability 
of each choice to certify it as “consistent with 

stakeholder understanding.” Modularization 
enables the verification of individual choices or 

modules. Then relying on the correctness inside 
modules verification can turn to the certification 
of behaviors resulting from composition of 
function. Experience often leads to dependable 
patterns of classes or modules applicable or 

adaptable to recurring modeling tasks. 
Verification in these situations can focus on 
known areas of fragility/risk limiting the effort 
required to reach a desired confidence level of 
reliability. 

Transparency is evident structure, revealing 
how things fit and work together. (Kaisler 2005) 
In the OO ontology “fit together” and “work 
together” are defined by the structural and 

behavioral relationships. Individual objects may 
represent clearly delineated and encapsulated 
choices, but their cooperation is defined by 
relationships. 

Inheritance explains the structural relationship 
of classes through the propagation of data and 
behavioral attributes. Inheritance not only 

propagates attributes, but also enables a class 
hierarchy’s capacity for exhibiting similarity and 
difference between parent and child classes. 
That which is similar (in fact identical) inherited 
by the child class is assumed and becomes in 

effect familiar – requiring no reiteration. This 

“folding” of that which is not changed avoids 
clutter in the child class description, but may be 
readily reviewed in the parent. 

The behavioral relationships of association, 
message passing, and polymorphism explain the 
predictable patterns of communication and 
action. Association uses the property of identity 

to designate membership, ownership, and 
accessibility among objects. Message passing 
provides the mechanism for cooperating action 
between objects providing a disciplined conduit 
through the encapsulating boundary of objects 
by using services to convey intention, 
information, and reaction. Polymorphism allows 

the abstraction of intention by using the same 
service name to evoke distinct behaviors from 
objects of different classes. The identical service 
names in classes with different methods directly 
realize the metaphorical abstraction of object 
behavior where at one level of abstraction the 

behaviors are the same and at a more detailed 
level of abstraction their behaviors are distinct. 

Composition of Function - As a fundamental 
tool for managing complexity humans regularly 
attempt to decompose problems, issues, or 
tasks into parts that either in themselves are 
sufficiently simple to permit direct solution or 

can through recursion be subdivided 
successively until they become sufficiently 

simple. This is a defining aspect of 
modularization. When the conception of a part 
also anticipates reuse then the part takes on a 
larger significance. The combination of 
specifying a choice consistent with the essence 

of system characteristics and then designing the 
choice as an interchangeable component in 
multiple super-ordinate choices is a step toward 
elegance. Reusable choices represent an 
understanding of the essence of the system at a 
deeper level than an individual application. They 
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represent awareness of the intention, perhaps 
even the philosophy of the system domain. 

Composition of function as a property of design 
quality is realized in model features that 

facilitate the extension or retargeting of the 
model in the future. It is the capacity to combine 
simple functions to build more complicated ones 
(Meyer 1988). The retargeting capability may be 
provided directly to the users of the system in 
the form of a programmable interface. A choice 
achieving the principle of composition of function 

is marked not only by the function it initially 
provides the user, but also by the functionality it 
anticipates and supports even (perhaps) before 
the stakeholders realize the need for the 
capability. 

Identity is at the root of recognition and is 

another property of design quality not usually 
defined in software engineering. In the physical 
world identity is literal based upon direct 
sensorimotor experience: by sight or touch and 
in some cases by sound or smell – a human 
experience of the “real” world. In the object-
oriented paradigm identity is an object property. 

(Khoshafian and Copeland 1986) Existence is 
sufficient for object identification.  

In other paradigms identification is achieved 
through possessed characteristics (attributes) 
that contribute to distinct recognition by a 
process of intersecting categorizations or the 

introduction of an artificial characteristic whose 

sole purpose is to support discrimination. Aside 
from the fact that these approaches to 
identification require some overhead (either 
mental or computational) they are simply not 
natural to humans. Humans perceive objects as 
possessing characteristics rather than 

characteristics defining objects. The former 
begins with certain uniqueness and progresses 
toward explanation while the latter begins with 
uncertainty and attempts to deduce uniqueness. 

Characteristics are not unimportant. 
Classification is essential in most human 
problem solving activities. And recognition is 

virtually always accelerated by the 
discrimination that categorizing characteristics 

(attributes) provide. And most importantly in the 
absence of physical experience categorization 
through characteristics is the only choice. Class 
structure and the instance relationship are vital 
to identity – an object belongs to “this” class 

and not to “another.” Described both by what an 
object “knows” (data attributes) and what it 
“knows how to do” (behavioral attributes) 
classes form a categorization cornerstone of the 
object-oriented ontology. But to model both the 
static and dynamic dimensions of reality 

(association and message passing) each object 
must be uniquely distinguishable. 

Scale’s effect on design quality is reflected in 
common idioms: “You can’t see the forest for 

the trees!” and “Let’s get a view from 10,000 
feet.” They reflect the importance of context in 
recognition and decision-making. Scale captures 
the modeling imperative that all choices must be 
kept in perspective because it is not sufficient to 
consider a choice only in the microcosm of itself, 
as it must also participate in the connectedness 

of the whole. By achieving scale, a system 
designer provides differing granularities of 
comprehensibility to suit the requirements of a 
variety of observers (Waguespack 2010). 

The relationships provided in the object-oriented 
paradigm (association, inheritance, instance, 

message passing, and even polymorphism) 
provide ample means for designing collections of 
cooperating choices that are nested, intersect, 
or partition the full field of functionality essential 
to the model. These may be called variously 
subsystems, modules, or sub-modules. In those 
cases where the actual structure of a collection 

must be rendered obscure, classes and objects 
can be devised to serve as facades or agents to 
“keep up appearances.” Coupled with stepwise 
refinement, as it is, scale is used to focus 
modeler and stakeholder attention to achieve 
the contextual understanding needed to address 
constituent concerns within the whole. 

User Friendliness is another property of design 
quality more often considered aesthetic. It is a 
combination of: ease of learning; high speed of 
user task performance; low user error rate; 
subjective user satisfaction; and, user retention 
over time (Shneiderman 1992). Its impact may 

be easiest to consider in its absence. A modeling 
choice that is “unfriendly” to stakeholders is 
confusing, hard to comprehend, unwieldy, and 
perhaps worst of all, of indeterminate 
correctness. That which defies understanding 
cannot be determined to be correct. Satisfaction 
is cumulative. The sensitivity to the 

stakeholders’ conceptions of the essence of the 
system to be modeled is key to the stakeholders’ 

sense of comfort, familiarity, and expectation. 

The object-oriented paradigm excels in its 
facility to represent systemst preserves the 
stakeholders’ ability to recognize “their” system. 
Authoring object-oriented models whose 

elements correspond almost one-to-one with the 
real-world concepts and entities results in 
intrinsically better stakeholder understanding 
and interaction. The casting of “objects” in the 
models that have direct counterparts in the 
stakeholders’ experience exhibits a 
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fundamentally friendly quality. It respects the 
stakeholders’ perceptions and it welcomes them 
into the processes of verification and validation 
that are intrinsic to correctness. The unified 

structure of “what an object knows” and “what 
an object knows how to do” correlates so 
naturally with observers of business models or 
process models that the natural clarity in that 
communication improves understanding and 
avoids mistakes in understanding, 
communication, or implementation. 

And in a serendipitous quirk of language (or a 
profound emergence of the deep meaning of 
metaphors) Alexander’s term from which the 
principle here, user friendliness, is derived is 
roughness. (Alexander 2002) Something has to 

have a certain degree of roughness if one is to 

be able to effectively grasp it! 

Patterns describe versatile templates to solve 
particular problems in many different situations 
(Gamma et al. 1995). All entities in the object-
oriented paradigm propagate from classes, 
predefined templates, or “cookie cutters.” This 
protocol organizes what otherwise would be a 

bewildering multiplicity of individual 
computational entities to consider. It becomes 
less complicated in the understanding that the 
potential of any number of objects boils down to 
understanding the class(s) of which they are 
instances. Each instance mimics perfectly the 
form and function of every other of its siblings, 

members of that class. Class hierarchies, 
generations of parent-child class definitions, 
defining “nearly the same” and “different in 
specific ways” relationships significantly lessen 
the apparent complexity that considering only 
individual entities entails. Class hierarchies 

define the path of unfolding for all to see – a 
depiction of the analysis, solution, and design 
philosophies at work. 

Patterns is the property of design quality that 
channels change (unfolding). A pattern 
foreshadows where and how change will need to 
be accounted for. Patterns of the form 

popularized in (Coplein, 1995) document 
commonly encountered design questions offering 

carefully considered advice and cautions. Their 
patterns are paradigm and modeling language 
independent. However, it is not surprising that 
many examples using patterns are presented in 
OO dialects. The reason is simple. The 

integration of instance, inheritance, message 
passing, and polymorphism relationships is an 
ideal toolset for expressing patterns with a 
balance of prescription and adaptability – a 
balance not as conveniently achieved in dialects 
based on pre-object-oriented paradigms. 

Programmability in software engineering is 
often considered a feature rather than a 
property of design quality – the capability within 
hardware and software to change; to accept a 

new set of instructions that alter its behavior 
(Birrell and Ould 1988). It is closely allied with 
extensibilityand addresses the need for models 
to welcome the future. What largely separates 
information systems from other human-made 
mechanisms is the degree of adaptability that 
they offer to deal gracefully with change. Unlike 

most appliances that support a very narrow 
range of use (albeit with great reliability), 
contemporary information systems are expected 
to provide not only amplification of effort as in 
computation, but also amplification of 

opportunity in terms of different approaches to 

business or organizational questions. 
Contemporary information systems are expected 
to demonstrate that they can reliably 
accommodate change. As with extensibility, 
successful accommodation of change relies on 
an understanding of the fundamental options 
governing the structure and behavior within a 

particular domain. The OO ontology offers 
powerful tools (structural and behavioral 
relationships, e.g. inheritance and 
polymorphism) to service the elements of 
change without fracturing a skeletal foundation 
of base classes characterizing the domain. 

What sets programmability apart from 

extensibility is a facility that permits altering the 

systems behavior without having to reconstruct 
choices – that is to say that the system’s 
behavior can be sensitive to the context 
determined by a “user” in “real time.” “Real 
time” is relative to the “user’s” role (e.g. 

developer or end user, etc.). This versatility is 
not accidental but architectural. Choices may 
provide an interface language for end users that 
permits selections of system actions to meet an 
immediate “real-time” need – an interface as 
simple as a light switch or as complex as a 
natural language. 

Reliability is a property of design quality more 
often associated with implementation than 
design. It is the assurance that a product will 

perform its intended function for the required 
duration within a given environment (Pham 
2000). Objects facilitate modularized testing and 
quality assurance. A certified class produces 

certified objects (which is not to say that 
certification is easy or inexpensive). As long as 
classes are protected from dynamic modification 
in deployment there is no need to be concerned 
with the inner workings of their objects. As long 
as objects are truly encapsulated they conform 

to the intention of their class. In development 
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testing proceeds incrementally as new classes 
are added or rearranged in their collaboration. 
Once deployed testing is relegated to their 
interactions rather than their definition. Testing 

is compartmentalized and does not explode 
exponentially when additional classes or 
functionality within a class is added. 

Reliability in design reflects an austerity that 
confines design elements to the essentials of the 
stakeholder’s intentions. When design or 
implementation decisions involve additional 

constructs due to technology or compatibility, 
these accidents of implementation must be 
clearly delineated so as not to imply that they 
are essence rather than accident. This clear 
distinction will protect future system evolution 

from mistaking accidental “baggage” as 

stakeholder intentions.  

Elegance is perhaps the epitome of subjective 
quality assessment that clearly sets choice 
properties of design quality apart from 
traditional software engineering metrics. 
“Pleasing grace and style in appearance or 
manner,” that’s how the dictionary expresses 

the meaning of “elegance”. (Oxford English 
Dictionary) 

 “A designer knows he has achieved 
perfection not when there is nothing left to 
add, but when there is nothing left to take 
away.” (Raymond 1996) 

Models composed of choices that are consistent, 

clear, concise, coherent, cogent, and 
transparently correct exude elegance and 
nurture cooperation, constructive criticism and 
stakeholder community confidence. These are 
models that confess to their own shortcomings 
because their clarity obscures nothing, even 

omissions. These are models that satisfy 
stakeholders. They appear “intuitively obvious.” 
The clarity of their composite structure is so 
self-evident that they seem “simple.” The use of 
the OO paradigm to construct a collection of 
“building blocks” in the form of a class library to 
encapsulate architectural design decisions 

facilitates this impression of what is “intuitively 
obvious.” Using well-conceived library elements 

becomes so second nature, so natural, that the 
builder perceives the blocks as the natural 
primitives of construction rather than 
constructed artifacts. 

Elegance largely proceeds from the efficient and 

effective representation of essential system 
characteristics along with those features 
emerging out of design decisions, accidents of 
implementation, that are laid out with equal 
clarity for separate consideration. This is the 

field effect of the beneficial, integrated, mutual 
support of strong choices described in Thriving 
Systems Theory. (Waguespack 2010b) 

6.  INTEGRATING THE DESIGN QUALITY 

LEARNING UNIT IN AN OBJECT-ORIENTED 
MODELING SYLLABUS 

For the past six semesters the design quality 
learning unit presented here is woven into two 
object-oriented modeling syllabi: 1) 
undergraduate systems analysis and design and 
2) masters level object-oriented systems 

engineering. The unit content appears 
throughout the pedagogy of modeling using 
UML-2 syntax.  

After initially presenting the object-oriented 
paradigm using the ontology to establish its 
vocabulary (see Appendix B), we present use 

case, class, and sequence diagramming 
establishing the syntax and the expression of 
semantics in UML-2. During this UML 
presentation we repeatedly allude to the design 
quality properties through the syntax. Small 
student groups and then individuals conduct a 
series of modeling exercises based on 

requirement narratives establishing the 
students’ grasp of UML syntax. On that 
foundation the explanation of design quality, the 
enumeration of the fifteen properties, and the 
corresponding application of OO ontology 
elements to strengthen the properties precede a 

final individual course modeling project. The 

design quality discussion provides a quality 
vocabulary for one-on-one consultations 
between teacher and student as each develops 
the object-model of their final project. In this 
one-on-one context each student’s specific 
design decisions are discussed and evaluated in 

relationship to the design quality properties, an 
opportunity for individualized, reinforced 
learning and/or suggested improvements. 

The deeper subtleties of design quality present a 
challenge for some students particularly in a 
compressed format. The “light doesn’t go on” 
right away for all students. However, the 

integration of the ontology and design quality 

property based vocabulary establishes a 
touchstone that returning students report helps 
them “to name” the “quality elements” they 
rediscover in succeeding coursework and 
professional practice. 

In your own curricular situation the distribution 

of learning unit elements may span more than 
one course (some addressed in OO 
programming, requirements engineering, or 
database design, etc.), be rearranged to suit 
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your modeling tools, or be adjusted to your 
course sequencing with context-appropriate 
examples. Regardless, the learning unit 
components are flexible and robust enough to 

suit various specific program needs. 
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Appendix A – Choice Properties (Waguespack 2010b) 

 

 

 
Choice 

Property 

Modeling 

Action 
Practical Action Definition 

1 
Stepwise 

Refinement 
elaborate develop or present (a theory, policy or system) in detail 

2 Cohesion Factor express as a product of factors 

3 Encapsulation encapsulate 
enclose the essential features of something succinctly by a protective 

coating or membrane 

4 Extensibility extend render something capable of expansion in scope, effect or meaning 

5 Modularization modularize 
employing or involving a module or modules as the basis of design 

or construction 

6 Correctness align put (things) into correct or appropriate relative positions 

7 Transparency expose reveal the presence of (a quality or feeling) 

8 
Composition of 

Function 
assemble 

fit together the separate component parts of (a machine or other 

object) 

9 Identity identify establish or indicate who or what (someone or something) is 

10 Scale focus 
(of a person or their eyes) adapt to the prevailing level of light 

[abstraction] and become able to see clearly 

11 User Friendliness accommodate fit in with the wishes or needs of 

12 Patterns pattern give a regular or intelligible form to 

13 Programmability generalize make or become more widely or generally applicable 

14 Reliability normalize 
make something more normal, which typically means conforming to 

some regularity or rule 

15 Elegance coordinate 
bring the different elements of (a complex activity or organization) 

into a relationship that is efficient or harmonious 
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Appendix B - OO Green Card (Waguespack 2009) 
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