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Abstract

Automobile Insurance fraud costs the insurance industry billions of dollars annually. This case study
addresses claim fraud based on data extracted from Alpha Insurance’s automobile claim database.
Students are provided the business problem and data sets. Initially, the students are required to develop
their hypotheses and analyze the data. This includes identification of any missing or inaccurate data
values and outliers as well as evaluation of the 22 variables. Next students will develop and optimize
their predictive models using five techniques: regression, decision tree, neural network, gradient
boosting, and ensemble. Then students will determine which model is the best fit providing consideration
of the misclassification rate, average square error, or receiver operating characteristic (ROC). Lastly,
students will generate predictive scores for the claims and evaluate the result using SAS Enterprise

Miner™, Ultimately, the goal is to build an optimal predictive model to determine which of the
automobile claims are potentially fraudulent.

Keywords: predictive analytics, neural network, decision tree, regression, data mining, predictive
scores, SAS Enterprise Miner
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1. INTRODUCTION

This case is designed to be used in a predictive
analytics course. The case provides an
opportunity for extensive research and analysis of
six of the nine steps in our Predictive Analytics
Process Model (see Figure 1). Predictive
techniques in the case include the Big Three -
regression, neural networks, decision trees as
well as Bayesian networks

Students are provided the business problem as
well as the data. The business problem is to
determine which new claims have the highest
probability of fraud. However, based upon the
data provided, the students must determine
which hypotheses will be the focus of their
analysis. They must then analyze the data and
create their initial predictive model. Once the
model is constructed, they can then optimize each
node to determine the best fit. Finally, the new
data can be scored from the best fit to determine
the new claims that have the highest probability
of fraud.

Figure 1 Predictive Analytics Process Model
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Background

Despite recent developments in data analytics
techniques and technology, the cost of fraud to
the insurance industry continues to increase
globally. According to the Coalition Against
Insurance Fraud (2018), at least $80 billion is
stolen each year as a result of insurance fraud.

Fraud is a common and recurrent problem in the
property-casualty insurance industry. Insurers
must be vigilant in identifying and dealing with
fraudulent claims. Claim fraud analysis is a key
analytic for many property-casualty insurers and
most have a dedicated Special Investigative Unit
(SIU) to investigate and resolve potentially
fraudulent claims (Saporito, 2015). According to
the Insurance Information Institute (2018), 42
states and the District of Columbia have set-up
fraud bureaus for reporting potentially fraudulent
claims. In some cases, they have multiple
bureaus by line of business. Healthcare, workers
compensation, and automobile insurance have
been the three most prevalent lines of business
to experience fraudulent claims. Insurance fraud
continues to be a big challenge for the industry,
regulatory authorities, and the public worldwide.
Data driven fraud detection offers the possibility
of utilizing a massive volume of prior claim history
to determine patterns that wuncover new
potentially fraudulent claims which can then be
investigated. This can provide both a cost and
workload efficiency (Baesens, Van Vlasselaer,
Verbeke, 2015).

Some activities that are fraudulent include vehicle
dumping (i.e., the owner abandons or dumps the
vehicle and reports it stolen), or exaggerated
costs of repairs after an accident (Essurance,
2018).

Some of the techniques to predict insurance fraud
include regression, neural networks, decision
trees as well as Bayesian networks. Applications

such as SAS Enterprise Miner™, IBM Watson
Analytics, and Microsoft Power BI are used by
insurance companies to help detect, analyze and
ultimately reduce fraudulent activities. There are
many tools and techniques in use to predict
potentially fraudulent claims, therefore it is
appropriate to use multiple techniques when
analyzing specific claims.

The Case

The Alpha Insurance Company (this is a
pseudonym and not intended to reference a
specific organization) has contracted with you to
develop an optimal predictive model to determine
which of their automobile claims are potentially
fraudulent. Historical data is a very good indicator
of potential fraudulent claims, so it is appropriate
to use it for analysis. They have provided two
datasets for analysis. The first is a historical
sample of automobile claim data containing 5,001
records. It contains attributes that are
considered significant in the identification of
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fraudulent claims, though it will be up to you, the
analyst, to determine which of these attributes
are the best determinants. The second file
contains 4,008 current automobile claims that
have not yet been analyzed. This file will be used
to apply your best model to analyze which claims
have the highest probability of being fraudulent
(i.e., this is the dataset to be scored). This
provides an opportunity to utilize the best
predictive model to analyze current data.

At a minimum, Alpha Insurance would like you to
utilize regression, decision trees and neural
network models to determine the best model to
predict which future claims are potentially
fraudulent. These models are considered the big
three in predictive analytics. In addition, you
should consider gradient boosting and ensemble
models.

The subsequent sections outline the requirements
for each of the six required steps from the
Predictive Analytics Process Model.

2. DETERMINE HYPOTHESIS

The data set used for this analysis contains 22
variables that each represent a single automobile
claim.

Since the data source denotes the initial point for
higher-level business analytics, data cleansing
and data pre-processing efforts should be used.

Two of the variables are redundant and therefore
may be rejected. These are the State (which is
the expanded definition of the State_Code) and
the Monthly_Premium (which is 1/12th of the
Annual_Premium). Nine other variables are useful
in understanding the cause and impact of the
claim, however, they are not indicators of
whether a claim is potentially fraudulent and thus
should not be included in the analysis. They
include: Vehicle_Model, Annual_Premium,
Claim_Cause, Months_Since_Policy_Inception,
Months_Since_Last_Claim, Claim_Report_Type,
Location, Claim_Date, and Outstanding_Balance.
The target variable is the Fraudulent_Claim
indicator. This is a binary variable that documents
whether the claim was fraudulent. It contains a
value of Y (Yes) or N (No).

Appendix A provides a description of each of the
attributes for both the sample historical data and
as well as the current (score) dataset. From the
remaining variables, you must then determine
your hypotheses that is the subject of your
analysis. Consideration must be given to whether

all remaining variables will be subject to analysis
or if additional variables will be rejected.

3. ANALYZE DATA

The sample claim data was extracted from Alpha
Insurance’s claim database.

Before you begin analysis, make sure your data
source matches the roles and levels as described
in Appendix A. The data needs to be processed to
determine if there are any missing or inaccurate
data values. In addition, outliers may have a
significant impact on analysis and therefore they
will also need to be considered. Alpha Insurance
is interested in determining which factors
(variables) are the most likely indicators that a
claim is potentially fraudulent and what is the
likelihood that the claim is fraudulent.

When preparing the data, you should test for
outliers and missing values and handle them
appropriately. You should also evaluate each of
the independent variables to determine if any
variables are skewed. If so, use appropriate
transformations.

For your analysis, begin by partitioning the data
using a 60/40/0 data set allocation for training,
validation, and testing. Varying the partition sizes
can impact the performance of a model. For a
dataset of this size, it is possible to evaluate your
models without creating a test dataset, later you
may want to experiment with these settings.

4. DEVELOP AND OPTIMIZE PREDICTIVE
ANALYTIC MODELS

Based upon the requirements set forth by Alpha
Insurance, at least five techniques must be
modeled to analyze this data (regression,
decision tree, neural network, gradient boosting,
and ensemble). For some of these techniques, it
is appropriate to try several different approaches.

When performing a regression analysis, you
should try several methods to determine which of
these is the best fit model. These regression
methods should include linear and/or logistic,
multi-factor polynomials, and DMINE. When
performing regression, consider the impact of
utilizing stepwise, backward, or forward
regression.

Decision trees are machine learning techniques
that state independent variables and a dependent
variable in a tree-shaped structure. Decision trees
can vary in complexity, therefore when
establishing your tree investigate the impact of
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changing the depth and number of branches.
Limit your depth to six and your branches to five
to ensure that the tree does not have too many
splits and therefore is no longer appropriate to
explain the business problem.

Neural Networks vary greatly based upon the
network type and number of hidden layers. Since
we have a target variable to analyze, try both a
generalized linear model and multi-layer
perceptron model. Investigate the impact of
varying the type of activation and combination
functions as well as varying the number of hidden
layers between two to six.

Each of the above techniques may result in the
use of multiple nodes. Each node tested should
be included in the final analysis. However, only
the optimal node within each technique should be
utilized within the ensemble node. If multiple
partitions were tested, the results of the best
performing partition should be considered in the
final analysis.

5. DETERMINE THE BEST FIT AND SCORE
NEW DATA

Alpha Insurance has not specified a specific
selection statistic to be used as the basis for a
recommendation on the model that is the best fit.
Therefore, it is appropriate to consider whether
the misclassification rate, average square error,
or receiver operating characteristic (ROC) should
be utilized, particularly if they yield a different
result to determine which model is the best fit.

Once you have determined which model is the
best fit, use that model to score the supplemental
claim score data set to generate probabilities that
these claims are fraudulent.

6. FINAL REPORT

The best fit model enables an insurance company
to identify and detect potentially fraudulent
activity more accurately and quickly, to ultimately
reduce the payout on fraudulent claims.

In your final report, you must include the
following sections:
1. Determine Hypotheses:
What were the hypotheses that you
tested? If any variables were excluded,
discuss why they were removed from
the subsequent analysis.

2. Analyze Data:
Which variable(s) had missing values
and how were they treated?

Which variable(s) contained outliers and
how did you address them?

What variable(s) did you identify as
being skewed and how did you handle
them?

What partition sizes were used and why?

3. Predictive Model:
For each model type, document the
properties that resulted in the best fit
model?
Which selection statistic was used and
why? Show the results of all of the
selection statistics.
Which model type resulted in the best fit
and why?

4. Scored Results:
Which claimant number(s) had the
highest probability of potential fraud and
what were the probabilities?
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8. NOTES

Two datasets accompany this case. They are:
Claim Raw Data - containing 5,001 records that
represent a historical analysis of fraudulent
claims; and Claim Score Data - containing 4,008
records to be processed to determine which new
claims have the highest potential for fraud.

Editor Note: Teaching Notes accompany this
case, contact the authors
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9. APPENDIX A - DATA DICTIONARY

Attribute
Claimant _Number

State_Code
State

Claim_Amount
Education

Claim_Date
Employment_Status

Gender
Income

Location

Marital_Status
Monthly_Premium
Annual_Premium

Months_Since_Last_Claim

Months_Since_Policy_Inception
Claim_Cause

Claim_Report_Type

Vehicle_Class

Vehicle_Size

Vehicle_Model

Outstanding_Balance

Fraudulent_Claim

Role
ID

Input
Reject

Input
Input

Reject
Input

Input
Input

Reject

Input
Reject
Reject

Reject

Reject
Reject

Reject

Input

Input

Reject

Reject

Target
[Dependent]

Level
Interval

Nominal
Nominal

Interval
Nominal

Nominal
Nominal

Binary
Interval

Nominal

Nominal
Interval
Interval

Interval

Interval
Nominal

Nominal

Nominal

Nominal

Nominal

Interval

Binary

Definition

Unique identifier assigned to each
claim

Two-letter state abbreviation where
the claim occurred

Name of the state where the claim
occurred

Total amount paid for the claim
Level of education attained by
claimant (High School or Below,
College, Bachelor, Master,
Doctorate)

Date when the claim occurred
Employment status of the claimant
(Employed, Unemployed, Medical
Leave, Disability, Retired)

Code indicating the claimant’s
gender (F, M)

Annual income of the claimant (in
UsD)

Categorical location where the
claimant resides (Residential,
Suburban, Urban)

Marital status of the claimant
(Divorced, Married, Single)
Monthly premium amount for the
policy

Annual premium amount for the
policy

Number of months since the last
time the claimant had a claim prior
to this claim

Number of months since the
insured began policy coverage
Cause of the claim (Collision, Fire,
Hail, Other, Scratch/Dent)

Code indicating how the claim was
reported (Agent, Branch, Call
Center, Web)

Type of automobile damaged as a
result of the claim incident (Two-
Door Car, Four-Door Car, Luxury,
SUV, Luxury SUV, Sports Car)
Category indicating the size of the
vehicle that was damaged
(Compact, Midsize, Luxury)

Model of the vehicle that was
damaged (Chevrolet, Ford, Honda
or Toyota)

Remaining balance owed on the
vehicle by the claimant at the time
the claim occurred

Code indicating if the claim was
fraudulent (Y/N)
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