In this issue:

4. **Easy as Py: A First Course in Python with a Taste of Data Analytics**
 Mark Frydenberg, Bentley University
 Jennifer Xu, Bentley University

16. **A Sentiment and Linguistic Analysis of Online Reviews of Online Universities**
 Alan Peslak, Penn State University

24. **Storing and Querying Bitcoin Blockchain Using SQL Databases**
 Kwok-Bun Yue, University of Houston – Clear Lake
 Karthika Chandrasekar, University of Houston – Clear Lake
 Hema Gullapalli, University of Houston – Clear Lake

42. **Integrating Big Data Analytics into an Undergraduate Information Systems Program using Hadoop**
 Justin DeBo, Millikin University
 RJ Podeschi, Millikin University

51. **Toward Visualizing Computing Curricula: The Challenge of Competency**
 Leslie J. Waguespack, Bentley University
 Jeffry S. Babb, West Texas A&M University

70. **Engaging College Students on Collaborative Projects with People with Cognitive Disabilities through e-Portfolios**
 James P. Lawler, Pace University
 Anthony Joseph, Pace University

82. **A Cross Collegiate Analysis of the Curricula of Business Analytics Minor Programs**
 Timothy Burns, Ramapo College of New Jersey
 Cherie Sherman, Ramapo College of New Jersey

91. **Hour of Code: A Study of Gender Differences in Computing**
 Jie Du, Grand Valley State University
 Hayden Wimmer, Georgia Southern University
The **Information Systems Education Journal** (ISEDJ) is a double-blind peer-reviewed academic journal published by **ISCAP** (Information Systems and Computing Academic Professionals). Publishing frequency is six times per year. The first year of publication was 2003.

ISEDJ is published online (http://ISEDJ.org). Our sister publication, the Proceedings of EDSIGCON (http://www.edsigcon.org) features all papers, panels, workshops, and presentations from the conference.

The journal acceptance review process involves a minimum of three double-blind peer reviews, where both the reviewer is not aware of the identities of the authors and the authors are not aware of the identities of the reviewers. The initial reviews happen before the EDSIGCON conference. At that point papers are divided into award papers (top 15%), other journal papers (top 30%), unsettled papers, and non-journal papers. The unsettled papers are subjected to a second round of blind peer review to establish whether they will be accepted to the journal or not. Those papers that are deemed of sufficient quality are accepted for publication in the ISEDJ journal. Currently the target acceptance rate for the journal is under 40%.

Information Systems Education Journal is pleased to be listed in the Cabell's Directory of Publishing Opportunities in Educational Technology and Library Science, in both the electronic and printed editions. Questions should be addressed to the editor at editor@ISEDJ.org or the publisher at publisher@ISEDJ.org. Special thanks to members of AITP-EDSIG who perform the editorial and review processes for ISEDJ.

2019 Education Special Interest Group (EDSIG) Board of Directors

- **Jeffry Babb**
 West Texas A&M
 President

- **Eric Breimer**
 Siena College
 Vice President

- **Leslie J Waguespack Jr.**
 Bentley University
 Past President

- **Amjad Abdullah**
 West Texas A&M
 Director

- **Lisa Kovalchick**
 California Univ of PA
 Director

- **Niki Kunene**
 Eastern Connecticut St Univ
 Director

- **Li-Jen Lester**
 Sam Houston State University
 Director

- **Lionel Mew**
 University of Richmond
 Director

- **Rachida Parks**
 Quinnipiac University
 Director

- **Jason Sharp**
 Tarleton State University
 Director

- **Michael Smith**
 Georgia Institute of Technology
 Director

- **Lee Freeman**
 Univ. of Michigan - Dearborn
 JISE Editor
INFORMATION SYSTEMS EDUCATION JOURNAL

Editors

Jeffry Babb
Senior Editor
West Texas A&M University

Thomas Janicki
Publisher
U of North Carolina Wilmington

Donald Colton
Emeritus Editor Brigham Young Univ.
Hawaii

Anthony Serapiglia
Teaching Cases Co-Editor
St. Vincent College

Paul Witman
Teaching Cases Co-Editor
California Lutheran University

Guido Lang
Associate Editor
Quinnipiac University

Muhammed Miah
Associate Editor
Tennessee State University

James Pomykalski
Associate Editor
Susquehanna University

Jason Sharp
Associate Editor
Tarleton State University

2019 ISEDJ Editorial Board

Samuel Abraham
Siena Heights University

Biswa dip Ghosh
Metropolitan State U of Denver

Doncho Petkov
Eastern Connecticut State Univ

Joni Adkins
Northwest Missouri St Univ

Audrey Griffin
Chowan University

RJ Podeschi
Millikin University

Wendy Ceccucci
Quinnipiac University

Janet Helwig
Dominican University

Franklyn Prescod
Ryerson University

Ulku Clark
U of North Carolina Wilmington

Melinda Korzaan
Middle Tennessee St Univ

Bruce Saulnier
Quinnipiac University

Amy Connolly
James Madison University

James Lawler
Pace University

Dana Schwieger
Southeast Missouri St Univ

Jeffrey Cummings
U of North Carolina Wilmington

Paul Leidig
Grand Valley State University

Karthikeyan Umapathy
University of North Florida

Christopher Davis
U of South Florida St Petersburg

Li-Jen Lester
Sam Houston State University

Leslie Waguespack
Bentley University

Gerald DeHondt II
Ball State University

Michelle Louch
Duquesne University

Charles Woratschek
Robert Morris University

Catherine Dwyer
Pace University

Richard McCarthy
Quinnipiac University

Peter Y. Wu
Robert Morris University

Mark Frydenberg
Bentley University

Alan Peslak
Penn State University
Easy as Py: A First Course in Python with a Taste of Data Analytics

Mark Frydenberg
mfrydenberg@bentley.edu

Jennifer Xu
jxu@bentley.edu

Computer Information Systems Department
Bentley University
Waltham, MA 02452

Abstract
Python is a popular, general purpose programming language that is gaining wide adoption in beginning programming courses. This paper describes the development and implementation of an introductory Python course at a business university open to students in a variety of majors and minors. Given the growing number of career opportunities in analytics, the instructors felt that including a module on Data Analytics would add relevance and interest in the course. A survey given at the end of the semester shows students found this topic to be relevant to their future uses of Python. The paper also discusses challenges in teaching a first programming course to students with varying levels of programming experience.

Keywords: Python, Data Analytics, programming languages, programming courses

1. INTRODUCTION
Python is a first programming language in many secondary schools and universities (Siegfried, Siegfried, & Alexandro, 2016), and industry has embraced it as well. A recent study (Cass, 2017) showed that Python was the #1 language among top US Computer Science departments for teaching introductory programming courses (Guo, 2014) Companies such as Google, Facebook, Instagram, Netflix, and Dropbox all make use of Python because of its simplicity and ease of deployment and code maintenance, and variety of available code libraries. These features allow developers to focus on writing code for their specialized applications. (Reynolds, 2018)

In addition to Python's popularity in creating applications for the Internet of Things (Frydenberg, 2017) and bioinformatics (Kortsarts, Morris, & Utell, Janine, 2010), recent years have seen a major increase in data science and analytics applications implemented in Python.

Python in the Business Curriculum
While many engineering and information science departments offer Python in an engineering context, Python in the business curriculum serves Computer Information Systems (CIS) and Information Technology (IT) majors, minors, and students in other business programs by giving them the opportunity to learn a popular language that is widely used in business.

Appendix 1, Table 1 shows the list of the top 12 MIS programs (US News & World Report, 2018) and based on information in the course catalogs on their websites as of June 1, 2018, which schools require Python, and which offer it as an elective for Information Systems majors. Only MIT requires Python for business analytics majors, and only Indiana University Bloomington offers it as an elective. Many of these schools
have engineering, computer science, or information science departments that offer a Python elective, but their course design likely focuses on programming concepts and algorithms rather than business applications. As business universities increase offerings in data science, analytics, and related fields, an understanding of Python will be essential.

Bentley University, a business university in Massachusetts, offered one section of Python as an experimental elective through its CIS Department for the first time during the fall 2017 semester, and three sections taught by two instructors during the spring 2018 semester. The instructor teaching the two spring sections sat in on the fall course so that both instructors could have a common basis of experience when modifying and preparing the course for the spring semester. Graded assignments and exams were the same across all three sections in the spring.

This paper explores considerations, assignments, and results of the implementation of an introductory Python course in a business school curriculum as well as student reactions to learning the language. The course fulfilled an Arts and Science elective.

The following questions guided this study:
- What factors motivate students to take (and universities to offer) Python as part of the business curriculum?
- In addition to programming fundamentals, which topics and applications of Python are considered relevant in a business context?
- What value do business students receive from taking an introductory Python course?

2. DESIGNING A PYTHON COURSE FOR BUSINESS STUDENTS

Undergraduate CIS majors at Bentley University are required to take a semester course in Java programming. Adding another language as an elective provides additional opportunities for students to strengthen their development skills, which will open more employment opportunities. Offering Python as an elective for CIS minors provides similar benefits.

Because Python is a very popular and widely used language in data-intensive disciplines, the course is also beneficial to Mathematical Sciences majors and minors. The introductory Python course has no prerequisites other than IT 101, a required course on digital literacy, covering technology concepts, Excel, and designing basic web pages with HTML, that is typically taken during the students' first year.

Topics
This course presented topics found in most introductory Python programming courses (McMaster, Sambasivam, Rague, & Wolthuis, 2017; Topi et al., 2010), including:
- Variables, Data Types, and Expressions
- Loops and Selection Statements
- Strings and text files
- Lists and Dictionaries
- Functions
- Classes and Objects

Several introductory Python textbooks (Downey, 2016; Lambert, 2018) also offer chapters presenting applications that include graphics processing and user interface development. In planning the spring 2018 course, the instructors recognized that teaching even the most basic applications of data analytics would be of interest to business students. To accommodate this additional topic, the instructors chose to replace the chapters on graphics processing and user interface development with a module introducing the basic data analytics capabilities of Python.

As this is an introductory course, the instructors omitted advanced topics such as higher order functions (map, reduce, filter, lambda), inheritance and polymorphism, even though they were covered in the course textbook (Lambert, 2018).

Course Structure
The Python course met for two 80-minute sessions each week during the Fall 2017 and Spring 2018 semesters. Each class session included instructor-led demonstrations, lectures or presentations, and often, short, in-class exercises that reinforced the topics being presented. Students relied on instructor office hours and assistance from tutors in the University's CIS learning center when they needed assistance.

The course assignments included a standardized midterm and final exam, comprised of multiple choice, trace the output, fill in the missing code statements, and coding questions. In addition to short coding problems completed in class which counted toward their class participation scores, students completed seven major programming assignments for homework, as summarized in Appendix 1, Table 2.
3. INTRODUCING DATA ANALYTICS IN A FIRST PYTHON COURSE

Given the widespread use and highly promoted applicability of Python to data analytics, the instructors added a unit on this topic during the Spring 2018 semester. Even though most introductory Python text books do not include this content, accomplishing basic data analytics tasks are within reach of beginning programming students.

To use the pandas (an acronym derived from “Python and data analysis”), matplotlib (2D plotting) and numpy (scientific computing and numerical analysis) libraries for data analytics in a Python application, an understanding of objects and collections is useful. Providing a taste of data analytics in an introductory Python course becomes possible, as it builds on earlier topics and makes the course content more relevant for students.

Basic Data Analytics Capabilities with pandas, matplotlib, and numpy

The instructors spent three class sessions on data analytics. Much of the first session was spent having students install pandas, matplotlib and numpy libraries using the Miniconda distribution of Python (Continuum Analytics, 2018) onto their laptops. Miniconda provides a minimal Python installation containing additional libraries and packages. Even with step-by-step instructions, some students found the install process to be cumbersome. Students running macOS were challenged by the need to run installation commands in a bash shell, as they were not familiar with using a text-based command line interface to interact with an operating system.

During the first and second classes on Data Analytics, the instructors demonstrated programs that use the pandas DataFrame. A DataFrame is a two-dimensional data structure with predefined methods to sort, filter, and rearrange columns, create pivot tables, and perform other calculations and operations. Examples included reading data from a file and storing it to a DataFrame, printing data with and without column headings (and contrasting how to accomplish the same task without using the pandas module), sorting data by one or more columns, finding maximum and minimum values. After having written for loops to iterate through lists and dictionaries and a Grid class (Lambert, 2018, p. 330) to process data earlier in the course, students found interacting with a pandas DataFrame to be much more intuitive for processing two-dimensional data.

The instructors also demonstrated how to use the matplotlib library to create simple line, bar, and pie charts from data stored in a DataFrame. Students completed short in-class activities that mirrored the demonstrations to develop their competency in accomplishing these tasks.

A Taste of Data Analytics: Twitter Analytics

The remainder of the second and third sessions introduced an application for analyzing Twitter data using pandas. The instructors shared an example based on Mayo (Mayo, 2017) showing how to read and analyze a file of Tweets obtained from a user’s Twitter account. Determining the total number of Tweets, most popular retweets and likes is accomplished by storing the tweets in a DataFrame, and sorting or summarizing the appropriate columns using methods of that class.

The corresponding homework assignment had students use the pandas, numpy, and matplotlib modules to analyze popular hashtags or mentions from a file of Tweets. A hashtag is any word in a Tweet that begins with a # symbol. A mention is any word in a Tweet that begins with an @ symbol. Students could analyze a file provided by the instructors containing Tweets from a university Twitter account or create a file containing their own Tweets. The assignment required students to import the Tweets into a DataFrame, process the text of each Tweet to create a dictionary of hashtags or mentions and their frequency of use, sort the results alphabetically and by frequency, and plot the results on a horizontal bar chart. The complete assignment description and sample output are shown in Appendix 2.

4. METHODS AND RESULTS

This study takes a quantitative approach using a survey instrument. In addition, student comments and reflections provide qualitative examples to support the results and conclusions.

Seventy of 75 students enrolled in the three spring 2018 sections voluntarily completed an anonymous online survey at the start and end of the semester to share their learning, interest, and impressions of the Python course. The incentive for completing the survey was three extra credit points added to their final exam scores. The discussion that follows presents results from that survey.

The classes were gender balanced, with 51% males, and 49% females. Fifty-four percent of the students were seniors, 36% juniors, 8% sophomores, and 1% freshmen. Of the students
enrolled, 48% had taken or were currently taking a first programming course in Java, 15% had taken or were currently taking a second Java programming course, and 37% had taken or were currently taking an introductory web development course covering HTML and JavaScript. Seventeen students claimed to have taken a programming class in high school. Appendix 1, Table 3 shows the variety of students’ majors and minors enrolled in the course. 43% of the students registered were CIS majors and 35% were CIS minors. Of the non-CIS majors, 50% were other non-CIS business majors and 7% were arts and science majors across 17 undergraduate programs of study.

As a response to the first research question, "What factors motivate students to take (and universities to offer) Python as part of the business curriculum?" students cited a desire to increase their future career opportunities and interest in programming as the two most common reasons for taking this class. Sample responses included "I enjoy the challenge of programming" and "My internship for this coming summer asked me if I could get into a Python programming class to be more helpful on the trading floor."

Students with little or no prior coding experience found the course to be extremely difficult. Short group projects assigned during class time created an active learning experience which enabled those with prior experience to assist their classmates for whom programming was new. Students recognized the different skill levels of their classmates and suggested that the CIS department consider offering both introductory and intermediate level Python courses in the future.

Of the assignments described in Appendix 1, Table 2, students found the first two assignments (About Me and Calculations) to be relatively easy, as expected. These programs required writing simple print statements and performing sequential calculations. The Buzz simulation described in (Offenholley, 2012) required converting values between numbers and string representations, conditional statements and loops as well as formatting data using format strings. This assignment proved to be more challenging as students were not used to integer division or modulus operations. The Account and Donor Management projects were even more challenging because of their complexity and the need for conceptual familiarity required when writing code to iterate through collections and files. The Battleship game proved to be very difficult because it required both an understanding of objects and classes, and the ability to develop relatively complex logic to place ships randomly in a grid. Students found the Data Analytics assignment at the end of the semester to be a welcome change because of its inherent relevance and much more manageable scope. The assignment required writing far fewer lines of code than the three previous assignments, and its solution closely mirrored examples shown in class.

Usefulness and Relevance of Course Topics

Students reflected on the course topics as related to their usefulness in understanding programming, as well as on their relevance to future careers. Appendix 1 Figures 1 (a) and (b) summarize these results. It is interesting to note that students found the data analytics module to be the most relevant while they considered all the other topics more useful in contributing to their overall knowledge of programming. This may be because creating an application using pandas and related libraries does not develop new programming skills, but rather, provides a relevant context in which to apply Python skills developed earlier in the semester. While mastering programming concepts provide the foundation for building Python applications, students found building applications to be more pertinent to their future careers.

In response to the second research question regarding which topics and applications of Python are considered relevant in a business context, students mentioned data analytics, dictionaries, lists and functions most frequently. One student said, "Pandas and matplotlib were cool, I wish we could have done less restrictive projects using those libraries.

Python and Employability

To answer the third research question on the value that business students receive from taking an introductory Python course, students reflected in the end-of-semester survey on the importance of knowing how to write code even if it is not a job requirement, the ability to write code as it relates to their commitment to become IT professionals, the importance of knowing Python when applying for future jobs or internships, the extent to which employers value employees who have Python skills, the extent to which having Python skills increases their value in the job market, compared to students without Python skills, and their abilities to tackle real-world problems and projects in their future work. Most students somewhat or strongly agreed with each of these and related statements, as shown in Appendix 1, Figure 2.
Business students in majors other than CIS found value in the course as they will apply their knowledge to in their future careers. A data analytics major wrote, "Python will be very relevant in my future career." Another student said, "Midway through the course I looked up how to apply analytics to Python and saw the pandas module. I didn't know how to download it or go about it, so I waited to see if we would get to it at the end of the semester. We ended up getting to it but had 2 classes on it. If we went more in depth with Pandas I think knowing that could help me more in my job as an investment analytics associate at a media agency this August." Another student commented, "I am a marketing major. Often, I need to understand the context of discussions around a product/topic. Python can [be used to] design web-crawlers and extract those data automatically. With this technology, I do not have to passively observe discussions anymore."

6. CONCLUSIONS AND FUTURE WORK

Teaching an introductory Python course with no prerequisites to a classroom of students from multiple business majors, each with varying experiences in developing code, was a challenge. Grouping students with prior programming knowledge with their less-experienced classmates was one way to bridge the gap between students majoring or minoring in CIS and other business disciplines. By completing several smaller in-class programming problems, students were prepared to work on larger homework projects.

Replacing graphics processing and user interface development with a module on pandas and data analytics was a favorable change in the course during the spring 2018 semester. Using these tools to analyze Twitter data has more immediacy and relevance than a more abstract or contrived textbook example. Based on student evaluations after teaching the course, students would prefer additional exposure to data analytics topics. In future semesters, the course will increase coverage of data analytics topics, replacing advanced topics such as recursion, and polymorphism.

As business curricula increase their major and minor offerings to include programs of study related to data analytics, such as Data Analytics, Finance and Technology, and Auditing Analytics), the demand for Python instruction will continue to increase. Introducing data analytics-related examples to the introductory Python course will make its content more relevant and offer wider appeal to the variety of students enrolled.

7. ACKNOWLEDGEMENTS

The authors acknowledge Professor Wendy Lucas for proposing this course at Bentley University, and for shepherding it through the curriculum committee for approval, and student tutors for their careful review of the assignments.

8. REFERENCES

Appendix 1. Additional Tables and Figures

Table 1. Python at Top 12 MIS Programs (according to US News)

<table>
<thead>
<tr>
<th>Rank</th>
<th>Name</th>
<th>Python is required as a Core Course for IS Majors</th>
<th>Python is offered an elective for IS Majors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Massachusetts Institute of Technology</td>
<td>Python is one of eight required courses for business analytics major (MIT has no IS undergraduate program)</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>Carnegie Mellon University</td>
<td>No</td>
<td>Python is only offered at graduate level (MSBA)</td>
</tr>
<tr>
<td>3</td>
<td>University of Arizona</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>University of Minnesota Twin Cities</td>
<td>2 object-oriented courses (can be Python or other OO language)</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>University of Texas Austin</td>
<td>1 app development course</td>
<td>No</td>
</tr>
<tr>
<td>6</td>
<td>Georgia Institute of Technology</td>
<td>Java required, not Python</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Indiana University Bloomington</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>8</td>
<td>University of Maryland College Park</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>9</td>
<td>University of Pennsylvania</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>Georgia State University</td>
<td>1 object-oriented course (can be Python or other OO language)</td>
<td>No</td>
</tr>
<tr>
<td>11</td>
<td>University of Michigan Ann Arbor</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>12</td>
<td>New York University</td>
<td>1 object-oriented course (can be Python or other OO language)</td>
<td>No</td>
</tr>
</tbody>
</table>
Table 2. Homework Assignments (Spring, 2018)

<table>
<thead>
<tr>
<th>#</th>
<th>Topics</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Displaying information, using an IDE</td>
<td>Print information about you</td>
</tr>
<tr>
<td>2</td>
<td>Expressions and Data Types</td>
<td>Calculate unit prices of food items based on quantity purchased</td>
</tr>
<tr>
<td>3</td>
<td>Control Structures</td>
<td>Buzz Game (test for numbers containing or divisible by 7) (Offenholley, 2012)</td>
</tr>
<tr>
<td>4</td>
<td>Strings, Text Files, Lists, OS Module</td>
<td>User Account Manager – store usernames, passwords, allow users to add/edit/delete account information</td>
</tr>
<tr>
<td>5</td>
<td>Dictionary of Lists</td>
<td>Manage a list of donors and donation amounts; determine most generous donor, and total donations.</td>
</tr>
<tr>
<td>6</td>
<td>Classes and Objects</td>
<td>Hide ships on a Battleship game grid; a player must locate them all within a specified number of turns</td>
</tr>
<tr>
<td>7</td>
<td>Introduction to Data Analytics</td>
<td>Analyze a file of Tweets to determine most popular hashtags; create a horizontal bar chart showing hashtags and frequency</td>
</tr>
</tbody>
</table>

Table 3. Majors and Minors enrolled in 3 sections.
The number of students from each major is shown in bold. Minors of students with identified majors shown are indented.

Accountancy	1	None Specified	1
Actuarial Science	7	Business Studies	4
		Computer Information Systems	1
		Data Technologies	1
		English	1
Business Studies	3	Computer Information Systems	2
		None Specified	1
Computer Information Systems	31	Data Technologies	1
		Finance	4
		Information and Process Management	2
		Information Design and Corporate Communication	1
		Communication	1
		Leadership	1
		Management	2
		Marketing	1
		Mathematical Sciences	1
Natural Sciences	1	Philosophy	1
Mathematics	6	Information Design and Corporate Communication	1
Accountancy	1	Computer Information Systems	6
Information Systems Audit and Control	2	Mathematical Sciences	1
Computer Information Systems	2	Information Design and Corporate Communication	1
Liberal Studies	1	Computer Information Systems	1
Management	2	Computer Information Systems	1
Managerial Economics	1	Mathematical Sciences	1
Marketing	5	Computer Information Systems	4
Mathematical Sciences	2	None Specified	1
Public Policy	1	Computer Information Systems	1
None Specified	1	None Specified	1
Grand Total	72		
Figure 1. Python Topics: (a) Usefulness in Learning Programming and (b) Relevance to Future Work.
Figure 2. Perceived Value of Python Skills as related to Employability
Appendix 2. Twitter Analytics Assignment Description

A **hashtag** is any word in a Tweet that begins with a # symbol, a **mention** is any word in a Tweet that begins with an @ symbol. In this assignment, you will use the pandas, numpy, and matplotlib modules to analyze hashtags or mentions found in Tweets during a period of several months and exported from Twitter.

Export Your Tweets

You can use the sample Twitter data file supplied containing Tweets from a university Twitter account or export your own Tweets to analyze. Follow these steps to export your own Tweets:

1. Sign in to your Twitter account.
2. Click your **profile icon** at the top right corner of the page.
3. Click **Analytics** from the dropdown menu below your profile icon.
4. On the Analytics page, click **Tweets** at the top of the page.
5. Select a date range of activity (choose a large enough date range so you have Tweets containing several hashtags or mentions),
6. Click the **Export Data** button to export your Twitter data.
7. Save the file as tweets.csv in the folder with the python program you are about to write.

Analyze Your Tweets

1. Follow the example given in class to load Twitter data from the tweets.csv file into a pandas DataFrame, removing irrelevant columns.
2. Allow the user to specify whether to analyze hashtags or mentions by typing h or m.
3. Analyze the **Tweet text** column of the data frame to create a dictionary of hashtags/mentions and corresponding frequencies (number of times each appears). For simplicity, the DataFrame will have two columns: Hashtag and Frequency, regardless of whether you are analyzing hashtags or mentions. As you process the data, convert all words to lower case so that, for example, hashtags #PYTHON and #python would be considered the same.
4. Create a pandas DataFrame containing each hashtag and its corresponding frequency.
5. Print the DataFrame.
6. Sort the DataFrame alphabetically by hashtag. Print the sorted DataFrame.
7. Sort the DataFrame in decreasing order by frequency. Print the sorted DataFrame.
8. Create a horizontal bar chart that plots each hashtag and its frequency. Be sure to set x and y labels for the axes, ticks for values and hashtags, and a title for your plot.

Sample Output

Analyze [H]ashtags or [M]entions?

<table>
<thead>
<tr>
<th>Hashtag</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>#bentley2022</td>
<td>6</td>
</tr>
<tr>
<td>#ohbot</td>
<td>1</td>
</tr>
<tr>
<td>#teslatuesday</td>
<td>1</td>
</tr>
<tr>
<td>#tiltbrush</td>
<td>3</td>
</tr>
</tbody>
</table>

Sorted Alphabetically

<table>
<thead>
<tr>
<th>Hashtag</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>#bentley2022</td>
<td>6</td>
</tr>
<tr>
<td>#ohbot</td>
<td>1</td>
</tr>
<tr>
<td>#teslatuesday</td>
<td>1</td>
</tr>
<tr>
<td>#tiltbrush</td>
<td>3</td>
</tr>
</tbody>
</table>

Sorted Descending by Frequency

<table>
<thead>
<tr>
<th>Hashtag</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>#bentley2022</td>
<td>6</td>
</tr>
<tr>
<td>#tiltbrush</td>
<td>3</td>
</tr>
<tr>
<td>#ohbot</td>
<td>1</td>
</tr>
<tr>
<td>#teslatuesday</td>
<td>1</td>
</tr>
</tbody>
</table>

![Popular Hashtags Diagram](image-url)