
Volume 4, Number 104 http://isedj.org/4/104/ October 25, 2006

In this issue:

Teaching an Introductory Programming Course for Non-Majors using
Python

Jeff Rufinus Y. Kortsarts
Widener University Widener University

Chester, PA 19013 USA Chester, PA 19013 USA

Abstract: In this paper we present an innovative approach to teaching an introductory program-
ming course for non-majors using the Python programming language. Lecture structure and sug-
gestions of topics (course outline) on developing and designing the course are briefly presented. This
teaching approach could be easily adapted to teach introductory programming courses to majors,
including Information Systems majors.

Keywords: pedagogy, innovative teaching approach, teaching tips, Python programming language

Recommended Citation: Rufinus and Kortsarts (2006). Teaching an Introductory
Programming Course for Non-Majors using Python. Information Systems Education Journal, 4
(104). http://isedj.org/4/104/. ISSN: 1545-679X. (Also appears in The Proceedings of ISECON
2005: §3362. ISSN: 1542-7382.)

This issue is on the Internet at http://isedj.org/4/104/

ISEDJ 4 (104) Information Systems Education Journal 2

The Information Systems Education Journal (ISEDJ) is a peer-reviewed academic journal
published by the Education Special Interest Group (EDSIG) of the Association of Information
Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1545-679X. • First issue: 8 Sep 2003.
• Title: Information Systems Education Journal. Variants: IS Education Journal; ISEDJ. • Phys-
ical format: online. • Publishing frequency: irregular; as each article is approved, it is published
immediately and constitutes a complete separate issue of the current volume. • Single issue price:
free. • Subscription address: subscribe@isedj.org. • Subscription price: free. • Electronic access:
http://isedj.org/ • Contact person: Don Colton (editor@isedj.org)

2006 AITP Education Special Interest Group Board of Directors

Stuart A. Varden
Pace University

EDSIG President 2004

Paul M. Leidig
Grand Valley State University
EDSIG President 2005-2006

Don Colton
Brigham Young Univ Hawaii

Vice President 2005-2006

Wendy Ceccucci
Quinnipiac Univ
Director 2006-07

Ronald I. Frank
Pace University

Secretary 2005-06

Kenneth A. Grant
Ryerson University
Director 2005-06

Albert L. Harris
Appalachian St

JISE Editor

Thomas N. Janicki
Univ NC Wilmington

Director 2006-07

Jens O. Liegle
Georgia State Univ
Member Svcs 2006

Patricia Sendall
Merrimack College

Director 2006

Marcos Sivitanides
Texas St San Marcos
Chair ISECON 2006

Robert B. Sweeney
U South Alabama
Treasurer 2004-06

Gary Ury
NW Missouri St
Director 2006-07

Information Systems Education Journal 2005-2006 Editorial and Review Board

Don Colton
Brigham Young Univ Hawaii

Editor

Thomas N. Janicki
Univ of North Carolina Wilmington

Associate Editor

Samuel Abraham
Siena Heights U

Tonda Bone
Tarleton State U

Alan T. Burns
DePaul University

Lucia Dettori
DePaul University

Kenneth A. Grant
Ryerson Univ

Robert Grenier
Saint Ambrose Univ

Owen P. Hall, Jr
Pepperdine Univ

Jason B. Huett
Univ W Georgia

James Lawler
Pace University

Terri L. Lenox
Westminster Coll

Jens O. Liegle
Georgia State U

Denise R. McGinnis
Mesa State College

Therese D. O’Neil
Indiana Univ PA

Alan R. Peslak
Penn State Univ

Jack P. Russell
Northwestern St U

Jason H. Sharp
Tarleton State U

Charles Woratschek
Robert Morris Univ

EDSIG activities include the publication of ISEDJ, the organization and execution of the annual
ISECON conference held each fall, the publication of the Journal of Information Systems Education
(JISE), and the designation and honoring of an IS Educator of the Year. • The Foundation for
Information Technology Education has been the key sponsor of ISECON over the years. • The
Association for Information Technology Professionals (AITP) provides the corporate umbrella under
which EDSIG operates.

c© Copyright 2006 EDSIG. In the spirit of academic freedom, permission is granted to make and
distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document
is presented, and it is not modified in any substantial way.

c© 2006 EDSIG http://isedj.org/4/104/ October 25, 2006

ISEDJ 4 (104) Rufinus and Kortsarts 3

Teaching an Introductory Programming Course

for Non-Majors Using Python

Jeff Rufinus

rufinus@cs.widener.edu

Y. Kortsarts

yanako@cs.widener.edu

Computer Science Department, Widener University

1 University Place, Chester, Pennsylvania 19013 USA

ABSTRACT

In this paper we present an innovative approach to teaching an introductory programming

course for non-majors using the Python programming language. Lecture structure and sugges-

tions of topics (course outline) on developing and designing the course are briefly presented.

This teaching approach could be easily adapted to teach introductory programming courses to

majors, including Information Systems majors.

Keywords: pedagogy, innovative teaching approach, teaching tips, Python

1. INTRODUCTION AND MOTIVATION

The IS 2002 Model Curriculum and Guide-

lines for Undergraduate Degree Programs in

Information Systems (Gorgone, 2002) for-

mulates several characteristics of the IS pro-

fession that are integrated into the curricu-

lum. One of these characteristics is “IS pro-

fessionals must have strong analytical and

critical thinking skills.” To achieve the neces-

sary levels of algorithmic and computational

capabilities for strong analytical and critical

thinking skills, it is essential to educate stu-

dents in computation and computational

techniques as early as possible, perhaps by

the end of their first year. Such practices

have been developed and adapted by many

Computer Science / Computer Information

Systems departments at many universities

in the US, where introductory courses have

been developed and offered for Information

Systems majors as well as for students spe-

cializing in other fields (non-majors).

The difficulties of teaching any programming

languages (C, C++, etc.) in introductory

courses, however, have been widely recog-

nized. By introductory courses we mean

courses given for the ‘beginners’ (majors

and non-majors) with no or minimal back-

ground in programming. The difficulty lies in

the fact that we have to equip these stu-

dents with the analytical and critical thinking

skills that could benefit them while at the

same time we have to introduce the whole

concept of a programming language. As a

result, many innovative teaching methods

were developed.

In this paper we present an innovative

teaching approach for an introductory pro-

gramming course using Python programming

language that has been developed in our

department. This is a pilot teaching project

that has been tested with non-Information

Systems/Computer Science majors. The re-

sults of this approach (within a reasonable

period of time) have proven to be effective

and above satisfactory. The evidences come

from the overall average grade of the class,

evaluation forms and students’ feedback,

and the increasing number of students tak-

ing the course. We believe that the effec-

tiveness of this approach will universally ap-

ply for other introductory courses, whether

they are for majors or for non-majors. With

no and/or slight modifications (e.g. the Py-

thon programming language could be substi-

tuted with other programming languages),

the approach presented here could be easily

c© 2006 EDSIG http://isedj.org/4/104/ October 25, 2006

ISEDJ 4 (104) Rufinus and Kortsarts 4

adapted to teach other introductory courses

including those of Information Systems /

Computer Science. As a matter of fact, we

are now applying this approach into teaching

the introductory data structures and algo-

rithms courses (with Java language) for our

Information Systems sophomores.

As a brief introduction, our department has

an undergraduate program leading to Bache-

lor of Science degrees in both Computer In-

formation Systems (CIS) and Computer Sci-

ence (CS). A variety of courses for majors

(CIS/CS) and non-majors (non CIS/CS) is

currently offered by the department. Several

years ago, the department began to offer a

course on programming language for non-

majors. The curricular need was to educate

non-majors with computational techniques

and programming capability; this need was

fulfilled through the introduction of a pro-

gramming language and real life applica-

tions. The course that we teach is open to all

non-majors and the population of the stu-

dents is always different each semester. For

the classes that consist of 85% to 90% sci-

ence students, the computational approach

worked very well, but for the classes with a

high percentage of English and other liberal

arts majors we found out (through general

course evaluation) some topics (e.g. the text

and string manipulation, multimedia) were

the most interesting and exciting for the

students.

2. CHALLENGES

The development of this course was a chal-

lenging task for our department for several

reasons. First, the students who would be

taking this course had never been exposed

to computer programming languages or to

computer programming techniques. Second,

the students who would take this course

would come from diverse disciplines (mostly

science majors), some with good mathe-

matical background and some without.

Third, the programming language to be used

in this course had to follow the “current”

trend in computer science, including the in-

troduction of object-oriented method. Of

course, there are varieties of programming

languages available, from C, C++, to Java,

but the question was which one would be

easy enough for the students to learn while

at the same time using it for problem solv-

ing. In the first several years after being

introduced, this course was taught using C

programming language. From our own ex-

perience in teaching this course (based on

students’ evaluations, etc.) we found that

the C language, even though it is a very

powerful language, is not a suitable lan-

guage to be introduced to the non-majors

with no background and experience in pro-

gramming.

3. WHY PYTHON?

Currently the course is being taught using

the Python programming language (Python

website, 2004). The interesting question is

why Python? There are several reasons for

choosing this language (e.g. “free” open

source, portability, object oriented capable,

there are many new textbooks on Python

available in the market (Deitel, 2004) (Lutz,

2003) (Mertz, 2003) (Zelle, 2004), etc.), but

the most important reason is Python is a

simple but powerful language to learn. This

is a fair statement to write from our own

experience in teaching Python to our stu-

dents in the last several years. The simplic-

ity of the Python programming language al-

lows for concentration on the programming

and problem solving techniques rather than

on syntax and complex language structures.

4. PEDAGOGICAL APPROACH

Teaching programming techniques for non-

major students, even in an introductory

course, is a challenging task. The conven-

tional teaching approach (Cohen, 1989) con-

sisting of long lectures plus homework, quiz-

zes, and exams, is not a very good approach

for teaching introductory computer pro-

gramming techniques for non-major under-

graduate students. There are several rea-

sons for this argument. First, the students

have diverse backgrounds. Thus, much lec-

ture time is needed to cover basic technical

concepts. Second, a majority of students

dislike the 50-minute lecture format, mean-

ing they will not be attentive and learn effec-

tively. Third, homework (with exercises,

programming assignments, problems, etc.)

alone is not enough to build a genuine un-

derstanding of the materials. The fact is that

students always use the “pattern matching”

technique when they try to solve problems

in the homework. (Hanson, 2000) (Hanson,

2004)

Realizing all of these obstacles, we have

modified our lecture style to use in-class

c© 2006 EDSIG http://isedj.org/4/104/ October 25, 2006

ISEDJ 4 (104) Rufinus and Kortsarts 5

activities as a way to build the students’ un-

derstanding of the materials. This approach

tries to generate the students’ capabilities of

learning through a research-based process.

After the mini lectures we give the students

class assignments for individual or team

completion. The assignments themselves

consist of several different exercises. We

have to find very challenging exercises that

will help build their understanding and

knowledge on the subject. To encourage the

students to come to class we always give

points for these activities. Overall, this

pedagogical approach changes the role of a

teacher from “sage on the stage” to “guide

on the side” supporting our main teaching

objective: to let the students build their own

understanding of the materials through chal-

lenging problems, exercises and in-class ac-

tivities.

After doing all these modifications to our in-

class teaching method, we noticed some

changes in the performance of our students.

First, the students seem to like our method

of teaching (data come from students’

evaluations and/or through private commu-

nications with the students). Second, the

students spend more time working during

class time (some students commented to

add more class time). Third, the students

have more confidence and better average

grades on tests and quizzes. Overall, the

students performed much better than those

in previous years, as manifested from their

average final grades.

5. COURSE OBJECTIVES AND GOALS

Our teaching approach realizes the following

needs: (1) to provide students with suffi-

cient knowledge in computer organization

(software and hardware); (2) to provide

students with independent and applied

knowledge of the Python programming lan-

guage; (3) to provide students with assign-

ments and examples that will help them de-

velop critical thinking and problem solving

techniques; and (4) to provide assignments

and projects that are related to a variety of

specific academic disciplines. The course

takes into account the very limited back-

ground that students will have in the sub-

ject.

Our pedagogical approach meets the follow-

ing course objectives:

1. To teach students the basic concepts of

the Python programming language

2. To teach students the basic concepts of

the programming cycle

3. To teach students to develop an under-

standing of each of the following con-

cepts: abstraction, debugging and pro-

gram correctness, functions and objects,

recursion, efficiency, reusability.

4. To teach students to develop logical and

critical reasoning and problem solving

techniques

5. To teach students to develop team and

collaborative skills

6. To teach students to develop write and

read communication skills

7. To teach students to be able to modify

existing software to adapt for specific

problems

8. To teach students to apply the knowl-

edge of the programming language and

programming techniques to their own

discipline

6. LECTURE STRUCTURE

To support our pedagogical approach the

following lecture structure was developed

and tested at our department and received

very positive student feedback:

Lecture Features:

• The simplicity of the Python program-

ming language allows for concentration

on the programming and problem solv-

ing techniques rather than on syntax

and complex language structures.

• Logical reasoning, as the most important

problem solving strategy, is emphasized

through theoretical and practical materi-

als.

• Each weekly lesson is comprised of three

lectures with theoretical materials, lec-

ture programming examples, a labora-

tory part, ideas for the team assign-

ments, and home programming assign-

ments with sample solutions. The

homework assignments for each lesson

are divided into sections according to the

specific topic and to the complexity

level. The materials support the typical

c© 2006 EDSIG http://isedj.org/4/104/ October 25, 2006

ISEDJ 4 (104) Rufinus and Kortsarts 6

lecture structure that was used at our

department (see Table 1)

• Each lesson includes a “problem solving”

section that relates to a specific problem

solving strategy that is relevant to the

specific week of study. Special attention

is devoted to analyzing and translating

the word problems that can be solved

with a computer and specific examples

are presented.

• If time permits, advanced material re-

lated to scientific computing using py-

thon, and bio-python with bio-

informatics examples, can be presented.

• The lecture practice component empha-

sizes the problem solving techniques in

the software development cycle. The

programming examples are based on

real world problems and motivate stu-

dents to learn in order to solve practical

problems. The lecture practice compo-

nent emphasizes an active learning ap-

proach. Special solution templates are

designed to involve students into the ac-

tive learning process.

• The program testing procedure is ex-

plained in detail for each example.

• The lecture practice component includes

examples from the different areas to an-

swer the needs of the diversity of the

students in the course.

• The laboratory component includes

teamwork assignments that can be im-

plemented during additional laboratory

sessions and/or during the student prac-

tice session at the end of the lecture.

7. COURSE OUTLINE

• Introduction: Computer – what is inside?

o This lecture provides a brief intro-

duction to computer organization,

operating systems, and program-

ming languages.

• Python environment:

o This lecture introduces the Python

environment and instructions for Py-

thon installation.

• First program in Python:

o This lecture introduces a few simple

examples for the first Python pro-

grams.

o The practice part of this lecture in-

cludes a detailed explanation about

two different modes with which stu-

dents can work: immediate and edit

modes.

o The approach that is adopted for the

first program will not include the

function “main” to reduce the com-

plexity of the examples and to reach

a maximum understanding of the

programming process.

• Explanation of the software development

process:

o In this lecture, the program devel-

opment cycle is explained in detail.

Table 1. Lecture structure

Session Purpose
% of time

(total=100%)

Warm-up
Multiple-choice quizzes are given (written or verbal) to review

material that was covered in the previous lecture.
10%

Theory Explanation of new material is presented. 30%

Lecture

practice

Examples are solved and explained in detail with active stu-

dent participation.
30%

Student

practice

Special sets of assignments are designed and proposed for

independent work by the students to practice the theoretical

material that was explained at the beginning of the lecture.

30%

c© 2006 EDSIG http://isedj.org/4/104/ October 25, 2006

ISEDJ 4 (104) Rufinus and Kortsarts 7

o Examples are given at several differ-

ent complexity levels.

• Basic Python commands and state-

ments:

o This lecture will introduce in-

put/output operations and assign-

ment statements.

o It will also introduce two basic data

types in Python: numeric and alpha-

numeric.

• Decision and loop structures:

o This lecture explores if, if - else, if –

elif – else.

o It also explores while loop and for

loop.

• Functions:

o Functional programming as a basic

programming design technique is in-

troduced.

o Our teaching experience demon-

strates that the functional approach

is much easier for non-majors to un-

derstand than object-oriented ap-

proach.

o The concept of function, however,

can be a difficult concept for the lib-

eral arts students to understand.

Many liberal arts students do not

have the necessary mathematical

background and are not familiar with

the concept of function in mathe-

matics.

o The concept of function is introduced

using the idea of transferring mes-

sages. The integrated teamwork

supports this idea.

• Recursive functions:

o This topic is the most intellectually

challenging topic in the course.

o The theoretical part of the lecture

provides a wide range of solved ex-

amples of different complexity to in-

troduce the concept.

• Simple data structures such as lists, ar-

rays, and dictionaries:

o The concept of simple data struc-

tures is presented.

o Simple examples of lists, arrays and

dictionaries are given.

• Algorithms:

o The basics of the design and analysis

of algorithms are presented.

o The focus is on numerical algorithms

to motivate science majors and to

show the power of the computer as

a computational tool for real world

problem solving.

• Advanced topics of the course include

introduction to object-oriented design

and bio-python with bioinformatics ex-

amples.

8. CONCLUSIONS

It is a very challenging task to teach an “In-

troduction to Programming” course for ma-

jors and non-majors. In the case of non-

majors, several reasons for the challenge

should be mentioned: First, the students

who would be taking this course have possi-

bly never been exposed to computer pro-

gramming languages or to computer pro-

gramming techniques. Second, the students

who would take this course come from di-

verse disciplines (mostly science majors),

some with good mathematical background

and some without. Third, the programming

language to be used in this course has to

follow the “current” trend in computer sci-

ence, including the introduction of object-

oriented method, yet this language should

be simple and powerful. Our own experience

demonstrates that the Python programming

language is a good choice for these begin-

ners because it is a simple language to

learn, is powerful, and has object-oriented

capability.

We developed an innovative teaching

method that has been tested successfully in

our institution. Our experience demonstrates

that students could learn more from in-class

activities than long lectures. In a 50-minute

class we offer a mini-lecture followed by a

variety of in-class activities. The in-class ac-

tivities are always challenging and specially

built in the form of research-based guided

process. These activities are mostly done in

a team even though individual assignments

are also given. Overall, this pedagogical ap-

proach changes the role of a teacher from

“sage on the stage” to “guide on the side.”

c© 2006 EDSIG http://isedj.org/4/104/ October 25, 2006

ISEDJ 4 (104) Rufinus and Kortsarts 8

The approach presented here could be

adapted to teach other introductory courses,

including those for IS majors.

9. REFERENCES

Cohen, D. K. (1989) “Contributing to Educa-

tional Change”, Philip W.Jackson, Editor.

McCutchan: Berkeley, CA.

Deitel, Harvey M., Paul J. Deitel, Jonathan P.

Liperi, Ben Wiedermann (2004) Python:

How to Program. Prentice-Hall.

Gorgone, John T., Gordon B. Davis, Joseph

S. Valacich, Heikki Topi, David L. Fein-

stein, Herbert E. Longenecker, Jr. (2002)

“IS 2002 Model Curriculum and Guidelines

for Undergraduate Degree Programs in In-

formation Systems.” Association for In-

formation Systems.

Hanson, D., and T. Wolfskill (2000) “Process

Workshops – A new model for instruction”,

Journal of Chemical Education 77, 120-

129.

Hanson, D., and T. Wolfskill (2004) Personal

communications and Discussions during

NSF Chautauqua Workshop, SUNY-

Manhattan, NY.

Lutz, M., and D. Ascher (2003) Learning Py-

thon, 2nd edition. O. Reilly.

Mertz, D. (2003) Text Processing in Python.

Addison-Wesley.

Python websites (2005) http://www.python

.org and http://www.biopython.org.

Zelle, John M. (2004) Python Programming:

An Introduction to Computer Science.

Franklin Beedle & Associates.

c© 2006 EDSIG http://isedj.org/4/104/ October 25, 2006

