
Volume 4, Number 64 http://isedj.org/4/64/ August 28, 2006

In this issue:

Robust Software Development: A Technical Approach Using the
Rational Unified Process

Robert F. Roggio
University of North Florida
Jacksonville, FL 32224 USA

Abstract: Most computer science (CS) and computer information sciences (CIS) programs require
one or more courses in software development. Within computer science programs, the courses
are normally entitled software engineering or senior design project, whereas within CIS programs,
software development is often called Systems Analysis and Design and is (more often than in CS
programs) a two course sequence. Often considered a capstone sequence, there is a wide range of
instructional approaches. In many cases the chosen approach is derived from the academic unit
within which the CIS program is offered. Schools of Business, Schools of Arts and Sciences, or
Schools of Engineering often approach the sequence differently. This paper presents a comprehensive
approach to teaching a two-course software development sequence in a CIS program taught within a
College of Computing, Engineering, and Construction. The sequence contains a modest treatment
of business concepts coupled with heavy emphasis on a disciplined development process using the
Rational Unified Process (RUP) in deference to more traditional instruction which often emphasizes
business concepts with less emphasis on software development. A brief discussion of topics found
in more customary approaches is followed by a detailed description of eleven project deliverables
required in the author’s approach. The paper concludes with student feedback and lessons learned.

Keywords: capstone software development, process, IBM Rational Unified Process, RUP

Recommended Citation: Roggio (2006). Robust Software Development: A Technical Approach
Using the Rational Unified Process Information Systems Education Journal, 4 (64).
http://isedj.org/4/64/. ISSN: 1545-679X. (Also appears in The Proceedings of ISECON 2005:
§2362. ISSN: 1542-7382.)

This issue is on the Internet at http://isedj.org/4/64/

ISEDJ 4 (64) Information Systems Education Journal 2

The Information Systems Education Journal (ISEDJ) is a peer-reviewed academic journal
published by the Education Special Interest Group (EDSIG) of the Association of Information
Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1545-679X. • First issue: 8 Sep 2003.
• Title: Information Systems Education Journal. Variants: IS Education Journal; ISEDJ. • Phys-
ical format: online. • Publishing frequency: irregular; as each article is approved, it is published
immediately and constitutes a complete separate issue of the current volume. • Single issue price:
free. • Subscription address: subscribe@isedj.org. • Subscription price: free. • Electronic access:
http://isedj.org/ • Contact person: Don Colton (editor@isedj.org)

2006 AITP Education Special Interest Group Board of Directors

Stuart A. Varden
Pace University

EDSIG President 2004

Paul M. Leidig
Grand Valley State University
EDSIG President 2005-2006

Don Colton
Brigham Young Univ Hawaii

Vice President 2005-2006

Wendy Ceccucci
Quinnipiac Univ
Director 2006-07

Ronald I. Frank
Pace University

Secretary 2005-06

Kenneth A. Grant
Ryerson University
Director 2005-06

Albert L. Harris
Appalachian St

JISE Editor

Thomas N. Janicki
Univ NC Wilmington

Director 2006-07

Jens O. Liegle
Georgia State Univ
Member Svcs 2006

Patricia Sendall
Merrimack College

Director 2006

Marcos Sivitanides
Texas St San Marcos
Chair ISECON 2006

Robert B. Sweeney
U South Alabama
Treasurer 2004-06

Gary Ury
NW Missouri St
Director 2006-07

Information Systems Education Journal 2005-2006 Editorial and Review Board

Don Colton
Brigham Young Univ Hawaii

Editor

Thomas N. Janicki
Univ of North Carolina Wilmington

Associate Editor

Samuel Abraham
Siena Heights U

Tonda Bone
Tarleton State U

Alan T. Burns
DePaul University

Lucia Dettori
DePaul University

Kenneth A. Grant
Ryerson Univ

Robert Grenier
Saint Ambrose Univ

Owen P. Hall, Jr
Pepperdine Univ

Jason B. Huett
Univ W Georgia

James Lawler
Pace University

Terri L. Lenox
Westminster Coll

Jens O. Liegle
Georgia State U

Denise R. McGinnis
Mesa State College

Therese D. O’Neil
Indiana Univ PA

Alan R. Peslak
Penn State Univ

Jack P. Russell
Northwestern St U

Jason H. Sharp
Tarleton State U

Charles Woratschek
Robert Morris Univ

EDSIG activities include the publication of ISEDJ, the organization and execution of the annual
ISECON conference held each fall, the publication of the Journal of Information Systems Education
(JISE), and the designation and honoring of an IS Educator of the Year. • The Foundation for
Information Technology Education has been the key sponsor of ISECON over the years. • The
Association for Information Technology Professionals (AITP) provides the corporate umbrella under
which EDSIG operates.

c© Copyright 2006 EDSIG. In the spirit of academic freedom, permission is granted to make and
distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document
is presented, and it is not modified in any substantial way.

c© 2006 EDSIG http://isedj.org/4/64/ August 28, 2006

ISEDJ 4 (64) Roggio 3

Robust Software Development:

A Technical Approach Using the

Rational Unified Process®

Robert F. Roggio
Department of Computer and Information Sciences

University of North Florida
Jacksonville, FL 32224

broggio@unf.edu

Abstract

Most computer science (CS) and computer information sciences (CIS) programs require one or

more courses in software development. Within computer science programs, the courses are

normally entitled software engineering or senior design project, whereas within CIS programs,

software development is often called Systems Analysis and Design and is (more often than in

CS programs) a two course sequence. Often considered a capstone sequence, there is a wide

range of instructional approaches. In many cases the chosen approach is derived from the

academic unit within which the CIS program is offered. Schools of Business, Schools of Arts

and Sciences, or Schools of Engineering often approach the sequence differently. This paper

presents a comprehensive approach to teaching a two-course software development sequence

in a CIS program taught within a College of Computing, Engineering, and Construction. The

sequence contains a modest treatment of business concepts coupled with heavy emphasis on

a disciplined development process using the Rational Unified Process (RUP®) in deference to

more traditional instruction which often emphasizes business concepts with less emphasis on

software development. A brief discussion of topics found in more customary approaches is

followed by a detailed description of eleven project deliverables required in the author’s ap-

proach. The paper concludes with student feedback and lessons learned.

Keywords: capstone software development, process, IBM Rational Unified Process, RUP

1. INTRODUCTION

There are a number of outstanding books

that many computer programs use to teach

software development. These books typi-

cally support a two course structure, where

the first part usually consists of systems

analysis while the second part focuses on

systems design and implementation. Many

undergraduate programs require such a cap-

stone sequence prior to graduation. The

backgrounds of students may vary consid-

erably depending upon the academic unit

within which the CIS program resides. Pro-

grams administered within an engineering

college will usually require students to have

taken courses in programming, data struc-

tures, database processing, communications,

networking, architecture, and perhaps some

Internet programming. Programs adminis-

tered in a School of Business generally re-

quire more coursework in business topics

typically offered in departments such as

Management, Marketing, Information Sys-

tems, Decision Sciences, Accounting and

Finance, and Economics. Regardless, this

culminating sequence in undergraduate

studies is oftentimes the place where stu-

dents are challenged to marshal their knowl-

edge and develop a real-life business appli-

cation. In some programs, this application

may synthesize many business concepts in-

volving people, procedures, information, and

process. Other applications may require an

approach that involves capturing and model-

ing user requirements, developing a design,

and ultimately implementing the design us-

c© 2006 EDSIG http://isedj.org/4/64/ August 28, 2006

ISEDJ 4 (64) Roggio 4

ing various modeling languages and pro-

gramming technologies.

At The University of North Florida (UNF), the

Information Systems (IS) program is admin-

istered in a CIS department within the Col-

lege of Computing, Engineering and Con-

struction. The department offers under-

graduate degrees in computer science, in-

formation systems, and information sci-

ences. Undergraduate programs in com-

puter science and information systems are

accredited by ABET/CAC. (An MS in CIS

with tracks in software engineering, informa-

tion systems, and computer science is also

available.)

Students in the Information Systems (IS)

program are required to take an eighteen-

hour business minor. Additionally, many IS

students minor in computer science. The

business courses are taught by various de-

partments in the College of Business Admini-

stration, which is AACSB-accredited.

Until recently the capstone IS courses, called

Senior Project 1 and Senior Project 2, have

been taught using the Whitten book

(Whitten, 2001), which the faculty found

very satisfying and up to date.

The Whitten text has chapters devoted to

Information System Building Blocks, Infor-

mation Systems Development, Requirements

Discovery, Process Modeling, Database Mod-

eling, Systems Design, Input/Output Proto-

typing, Project Management and more. I

have personally used this book and it con-

tinues to be the text of choice by some fac-

ulty members who also teach the capstone

sequence. System Architect®, ERWin®,

Oracle®, Java, JavaScript, HTML and some

XML are typical technologies used to support

development of a real-world application.

The graduates of UNF computing programs

(both computer science as well as informa-

tion systems) are expected to serve in a va-

riety of capacities in the workplace. Most of

the IS graduates (in contrast to MIS gradu-

ates produced by the College of Business

Administration) are expected to enter the

workplace and become involved in some

phase of software development. The local

region continues to have a significant reli-

ance on mainframe technologies (COBOL,

database, etc.) while migrating in many

cases to the newer architectural models that

are mostly highly-distributed, multi-

platform, client-server approaches. For

these graduates, their minor in business

courses serves them well. But the lack of

familiarity with the more modern software

development approaches demanded atten-

tion.

As a result, an alternative approach to the

well-established approach was developed

and implemented for the last two years in

selected section offerings of the capstone

sequence. This approach incorporates the

Rational Unified Process (the RUP®), a dis-

ciplined development process, with Rational

Rose as the primary support tool for captur-

ing a number of models and views devel-

oped during the two semesters. Because

the students have had a number of pro-

gramming courses (COBOL, File Structures,

Java programming, Data Structures with

OOP) plus at least one course in Database

Processing, courses in networking, Internet

Programming and more, the technology base

for the students is well-established. Apply-

ing these technologies with the framework of

an industrial-strength process such as the

RUP® appears to have favorably addressed

the need of modernizing the capstone se-

quence experience for our students and re-

gional constituency.

While a number of topics covered in the

Whitten book continue to be included in this

approach, they are addressed within specific

deliverables. Prototypes are built, executed,

and evaluated. Stakeholder needs and fea-

tures are documented using a Vision docu-

ment. Business Modeling and domain mod-

eling are parts of required deliverables. Use

Case specifications developed in Microsoft

Word® and Use Case Diagrams developed

and captured in Rational Rose® are used to

model the functional requirements; architec-

tural systems design is captured through

subsystems in interaction diagrams at vari-

ous levels of abstraction. Fully-attributed

lists and schema are developed. Databases

using Oracle 9i are built, and middleware

(java.sql) assists in interfacing.

Some important business concepts are ei-

ther not covered or covered weakly. Busi-

ness Process Reengineering (BPR), concepts

of project management, Data Flow Diagrams

(DFDs) and Entity Relation Diagrams (ERDs)

are only briefly mentioned. Topics such as

cost-benefit analysis return on investment

(ROI), decision tables, and different compo-

c© 2006 EDSIG http://isedj.org/4/64/ August 28, 2006

ISEDJ 4 (64) Roggio 5

nents of feasibility are weakly covered.

Other diagrams (Fishbone diagrams, PERT,

Gantt Charts, Microsoft Project®, for exam-

ple) are not included. Some of these topics,

however, have been covered in business

courses the students have already taken.

2. A SHIFT TOWARD THE IBM-

RATIONAL UNIFIED PROCESS (RUP)

Although there remains a good deal of tradi-

tional software development using modified

waterfall models as well as a number of in-

cremental and/or evolutionary approaches

occurring world-wide, many newer project

development efforts in the workplace are

shifting toward use of the object-culture and

a supporting process that uses modern de-

velopment tools and notations. Graduates

of many CIS programs are expected to not

only have an appreciation of the business

enterprise, but they must be equipped with

problem-solving skills, analysis and pro-

gramming skills (particularly using object

oriented languages), UML, and knowledge

about different development processes.

While no single development approach fits

all environments, many enterprises are

training their software project managers and

software developers in OO languages and

the effective utilization of a disciplined, in-

cremental and iterative process in particular,

the Rational Unified Process (RUP) ® to-

gether with associated tools.

The RUP® is defined as a “use-case driven,

architecture-centric, iterative development

process” (Kruchten, 2004). These three de-

scriptors characterize the process well. But it

is the real integration of these principles and

practices into the day-to-day development

activities that will more likely provide for the

more reliable delivery of software on-time,

within budget that meets or exceeds cus-

tomer requirements.

Three years ago, the North Florida Rational

Users Group (http://www.nf-rug.com) was

formed in Jacksonville, Florida to provide a

forum for professional software developers,

managers, business analysts, and students

to meet and discuss myriad issues of com-

mon interest related to software develop-

ment. This user group is currently the larg-

est group in number in the contiguous

United States (Roggio, 2004) and arose out

of genuine need to share experiences and

problems. This group meets monthly on the

campus of UNF and has guest speakers,

group discussions, and workshops.

With this backdrop a redesigned course se-

quence Senior Project 1 and 2 has been re-

vamped and offered with tremendous suc-

cess in the North Florida market. The se-

quence is continuously undergoing change

and refinements, and suggestions are al-

ways welcome.

3. DEVELOPMENT FRAMEWORK FOR CIS

SENIOR PROJECTS

The course descriptions break down the

many activities of the sequence into eleven

deliverables, whose contents approximately

follow RUP guidelines. (One may view my

no-frills web page that includes slides, deliv-

erables, examples of student work, and

more at: http://www.unf.edu/~broggio

/Spring2005.html).

The lectures and deliverables have been

modified each time the course sequence has

been offered – in the true iterative spirit of

this process. It is doubtful that a firm set of

lectures and deliverables will ever be com-

pleted. And, while no locked-in, final set of

student deliverables is anticipated, the fol-

lowing scenarios are offered in the spirit of

collegial sharing – taking (if desired) what

might fit into a program, discarding other

parts, and, most importantly, improving and

refining the deliverables for different needs

and constituencies graduates may serve.

The textbooks used for the two course se-

quence are listed in references (Kruchten,

2004), (Kulak, 2004), (Lethbridge, 2001),

and (Quatrani, 2004). These books repre-

sent topics/examples dealing with visual

modeling, the RUP, use case design and

evolution. The Lethbridge book represents a

more rigorous software engineering book

used more in the second semester for soft-

ware architecture, design patterns, and

frameworks.

The course also requires the availability of

IBM’s Rational Rose, which can be easily ac-

quired with licenses readily issued through

the IBM Scholar’s Program for free. At UNF,

there are twenty-five floating licenses and a

node-locked version for a notebook com-

puter. Installation and maintenance on local

servers for student laboratories is the re-

sponsibility of the local university, and the

license granted by IBM is annual and renew-

c© 2006 EDSIG http://isedj.org/4/64/ August 28, 2006

ISEDJ 4 (64) Roggio 6

able. Deliverables by student teams were

also supported using Blackboard, which

proved to be excellent for sharing files and

similar artifacts in development. Local serv-

ers supporting Java Server Pages (jsp) and

Oracle 9i® or MySQL® were also made

available and maintained by technical sup-

port personnel on departmental servers.

4. DELIVERABLES

Framework

Media: As a significant departure from ac-

customed heavy-paper approaches, all de-

liverables are submitted on a single CD. The

opening window on a team CD (via Explorer

or My Computer) is to display separate

folder icons entitled, Deliverable #1 through

Deliverable 11. That’s it.

General Structure: All deliverables contain

an Executive Summary which outlines the

content of the deliverable; schedule and in-

dividual tasking and hours expended on vari-

ous tasks are included. Within the deliver-

able folder are two subfolders nominally en-

titled Artifacts and Management Documents.

All Rose Models, Use Case Specifications,

and associated Word documents are to be

placed in the Artifacts folder, while docu-

ments such as the Vision Document, Busi-

ness Rules, Glossary, and the Risks List are

found in the Management Documents folder.

Students must include a form that acknowl-

edges grammar and misspellings are unac-

ceptable. To the dismay of a few, this was

enforced.

Framework for Deliverables: The begin-

ning of the course sequence includes discus-

sions and readings on best practices of soft-

ware development such as monitoring

change, visual modeling, use-case driven,

architectural-centric, iterative development,

and establishing baseline architectures. Con-

siderable time is spent discussing RUP fea-

tures with particular emphasis on time-

boxed iterations, phases, cycles, core and

supporting disciplines and workflows (Figure

1). Included also are the basics of the Uni-

fied Modeling Language (UML) notation and

the fundamentals of ‘object culture’ itself.

Deliverable #1. Business Case; Domain

Analysis: Objective: To understand the

structure and dynamics of the organization

itself. This is realized in part via a business

vision document. Major business functions

and business actors are modeled. Applica-

tions cannot be developed without develop-

ers understanding and appreciating the envi-

ronment within which the application will

operate.

The Business Case also includes several

models. In addition to the business vision

document, business use case models and

Figure 1. Phases, Iterations, and Disciplines in the RUP (Kruchten, 2004)

c© 2006 EDSIG http://isedj.org/4/64/ August 28, 2006

ISEDJ 4 (64) Roggio 7

the Business Object Model are developed

and captured in Rational Rose. Also included

are a Risks Lists document and a Business

Rules document, both text documents. A

template of downloadable document formats

for a variety of documents is available at

http://jdbv.sourceforge.net/RUP.html.

Deliverable #2. Domain Model, Vision

Document and Statement of Work

(SOW): Objective: Establish the domain

model, a vision document for the application

to be developed and a statement of work.

The Domain Model is really part of the busi-

ness case and is essential to understanding

important features and key abstractions in

the environment. (Developing the Domain

Model was moved to the second deliverable

due to the volume of work and initial learn-

ing of tools in Deliverable #1.) The Vision

Document is an essential document and

must provide a very high level list of user

needs and ‘features’ that the application

must accommodate (Leffingwell, 2002).

These features are usually text and not be-

havioral. Sample descriptions of features

that an application entitled ClassicsCD.com

Web Shop might include are: the need for a

secure payment method; need for the cus-

tomer to be able to easily browse for avail-

able titles; ability of the customer to check

the status of an order; email notification to

customers; to have the catalog highly scale-

able to include many titles and effective

searching through those titles; and ability

for customer to register for future purchases

without needing to re-enter personal infor-

mation.

The domain model, a graphical model and

precursor to Use Case specification, is very

helpful for use case development, as the use

cases will contain terms and perhaps acro-

nyms from the glossary (Deliverable #1)

and references to key business abstractions

(business entities) from the domain model.

The glossary and domain model provide a

common basis for understanding the lan-

guage used in capturing the functionality in

use cases.

The abstractions found in the domain model

itself contain business entities with their as-

sociations, dependencies, attributes and

other relationship features. The attributes

and relationships among these entities rep-

resent key entity connections that serve as

strong candidates for understanding the

business enterprise and also for reuse across

a number of specific applications that may

be developed within the business enterprise.

The Domain Model is developed in Rational

Rose® and captured in a separate folder

under the Logical View in the Rose Browser.

The Statement of Work (SOW) addresses

the team plan: tasks and responsibilities,

tentative schedule and deliverables, assign-

ment of roles, and similar activities. In each

deliverable, artifacts from previous deliver-

ables are reviewed and updated as needed.

Deliverable #3. Use Case - Façade It-

eration; Initial User Interface Proto-

type: Objective: to develop a set of façade

use cases for the new application and to de-

velop an initial user interface prototype.

While considering the merits of a number of

different formats and templates, students

create a first-cut set of use cases by sub-

scribing to façade level use case formats

found in (Kulak, 2004). In identifying use

cases themselves, emphasis in developing

the façade level use case specification is on

a use case name in verb-object format and

identification of actors. Specific scenarios

are not developed at this time. But triggers,

pre and post-conditions, assumptions and

links to business rules document and the

business risks document are included. An

Actors package and a Use Case package are

developed within the Use Case View in the

Rose browser. Within the Use Case package,

use case diagrams are drawn to accompany

the façade use case textual specifications,

developed in Word®. The emphasis on this

introductory experience with use cases is to

provide familiarization with the structure and

format of use cases and to set the stage for

developing more mature use cases for a

comprehensive specification.

Students are able to select the technology of

their choice in designing an initial user inter-

face prototype. The emphasis on a first cut

prototype of the user interface is to expose

the student to the importance of under-

standing what ‘utility’ and ‘usability’ of a

user interface really entail. Recognition that

to the end user, the user interface ‘is’ the

application is stressed!

From the application’s development, the ob-

jective of developing the user interface is to

ensure that the functionality captured in the

use cases is accommodated and understood

by all stakeholders. Oftentimes the devel-

c© 2006 EDSIG http://isedj.org/4/64/ August 28, 2006

ISEDJ 4 (64) Roggio 8

opment of the interface may indicate fea-

tures not captured in the use case. While

the full interface is not developed here, basic

functionality is shown. For a number of stu-

dents, this deliverable is often an exercise in

learning / using technologies with which

they are unfamiliar.

Deliverable #4. Fully Developed Use

Case Models and Activity Diagrams: The

objective of Deliverable #4 is to fully de-

velop the use case specifications including all

scenarios; that is, the basic course of events

(happy path) and identification of alternative

paths and exception paths. A basic flow de-

veloped first. Additional scenarios are de-

veloped second. The use cases are docu-

mented in a complete (but certainly not ‘fi-

nal’) form. Activity Diagrams (one per use

case) is also required for the deliverable.

Starting with this deliverable, the amount of

work required increased significantly for the

teams.

The development of the basic course of

events and both alternative and exception

flows in use cases requires substantial team

effort. Extension points were introduced and

used to link to alternate scenarios as well as

any sub-flows as appropriate. Differences

between ‘included’ and ‘extended’ use cases

are covered. Scenarios containing glossary

terms or references to business entities in

the domain model have these terms ‘bolded’

for emphasis (Figure 2). This technique

provides visible linkage to descriptions found

in these artifacts.

Use cases diagrams are grouped by major

key functions into specific, named packages

in the Rose Browser within the Use Case

View. The use case specifications continue to

be developed in Word®; the use case dia-

grams are developed in Rose. No attempt

was made at this time to capture non-

functional requirements; rather, the empha-

sis is on recognizing use cases as behavioral

models (stories) of actor(s) interacting with

the application.

Activity Diagrams for each use case capture

the essence (all scenarios) of a use case.

This requires additional modeling using the

Rose browser to associate the activity dia-

gram with a specific use case. The use of

activity diagrams is open to debate, as some

practitioners do not build them at all. Other

practitioners use both use case specifications

and activity diagrams; still others develop

activity diagrams and then discard them

once the entire use case specification is de-

veloped. The author views the activity dia-

grams as a single visual model of a use case

with all of its scenarios. Regardless, it is a

worthwhile experience for students to de-

velop activity diagrams.

Deliverable #5. Developing the Analy-

sis Model and Capturing Non-Functional

Requirements: As the last deliverable in

the first semester, the objective of this de-

liverable is to require team members to

carefully study the scenarios of each use

case and to develop analysis models (struc-

tural and behavioral) of each use case. Us-

ing the narratives of the use case specifica-

tions together with the user interface proto-

type, students develop a structural model,

which is an analysis model using a set of

analysis classes (boundary, control, and en-

tity) for each use case in accordance with

RUP® philosophy. This static model sup-

ports each use case. The behavioral model

is realized via a sequence diagram and is

required to model the basic course of events

in each Use Case. The structural model pre-

sents a grouping of classes that in RUP®

technology are referred to as the View of

Participating Classes (VOPC). This VOPC

provides a model of classes and the relation-

ships (associations and dependencies)

needed among them to realize the function-

ality captured in the Use Case. While

classes in an analysis model are typically

incomplete, a realistic first cut is under-

taken. Classes are developed using a ‘re-

sponsibility approach’ where data together

with methods that need the data are encap-

sulated. The notion of separation of con-

cerns (boundary, control, entity) is empha-

sized. Those analysis classes that may /

may not morph into design classes and oth-

ers that may be accommodated via reverse

engineering during design are discussed.

The models themselves are developed in

Rose. A sample VOPC is presented in Figure

3. Not a great deal of time is spent on

analysis modeling. But this activity serves

as an important bridge to the Design Model.

While the behavioral model (captured in a

sequence diagram) is realized by a collabo-

ration of objects and their responsibilities

shown by message passing, the student is

thrust into the detailed nature of object cul-

ture – knowledge that becomes vital during

c© 2006 EDSIG http://isedj.org/4/64/ August 28, 2006

ISEDJ 4 (64) Roggio 9

Use Case Number: 003

Use Case Name: Maintain Agent Listings

Actor (s): Agent, RDBMS, Web Viewer, Account Rep, System Manager

Maturity: (Façade/Focused/… Focused

Summary: The sequence of actions available to maintain an Agent’s listings. The Actors

can add, delete, or update a listing from here.

Basic Course of Events:

Actor Action

1. Actor Agent selects maintain

listings.

3. Actor Agent enters user ID and

password.

5. Actor RDBMS replies with infor-

mation if found.

8. Actor RDBMS retrieves and sup-

plies to the system the Actor’s per-
sonal information and list of list-

ings.

{Modify Listing}

10. Actor Agent selects create listing

…(more)

System Response

2. System asks for user authentications

4. System receives Actor’s user ID

and password entry and sends request

to RDMS.

6. System authenticates user ID and
password.

{User not Authenticated}

7. System requests from RDMS

Agent’s personal information and list

of listings.

9. System presents Agents’ page.

11. System presents blank input page.

… (more)

Alternative Paths: See end of document.

Exception Paths: E1. If user not authenticated, System asks for username and password again.

Repeat 5 times till user authenticates. If not authenticated display error, then

return to flow of events.
 E2. If Actor tries to create listing without entering data. System asks for re-

quired fields to be entered. Returns to flow of events.

Extension Points: {User not Authenticated} see exception E1.
{Missing required fields} see exception E2.

{Modify Listing} see alternative path A1

{Change Listing Status} see alternative path A2
{Delete Listing} see alternative path A3

Triggers: Actor has selected the option to maintain listings.

Assumptions: Actor has entered the proper URL into the browser.

Actor has successfully authenticated and logged in.

Preconditions: Actor Agent has successfully authenticated and logged in.
Agent of interest has been identified.

Post Conditions: Agent is returned to maintain listings menu.

Reference: Business Rules: 4.2.1 Agent Account
4.2.2 Fee

4.2.3 Agent Listings

4.2.4 Delinquent Agent
4.2.5 Security

Reference: Risks 2.2 Human Risk: Unauthorized manipulation of content (illegal hacker)

2.3 Human Risk: Legal liability due to misrepresentation of property

2.5 Technical Risk: Data Stagnation

2.6 Technical Risk: User GUI not user friendly

Author(s): Team One

Date: 08/Nov/2004

Figure 2. Sample Mature Use Case (Student Work: A Real Estate Application)

c© 2006 EDSIG http://isedj.org/4/64/ August 28, 2006

ISEDJ 4 (64) Roggio 10

Figure 3. Sample Analysis Model (Student Work: A Court Documents Applica-

tion)

design, when real design objects are built

with many associations and dependencies.

Seeing the explicit nature of message pass-

ing and object collaboration in meeting the

requirements for satisfying a Use Case sce-

nario is eye-opening for many.

Non-functional requirements (e.g. persis-

tency, security, distribution, legacy, and

others) are treated rather superficially, cap-

tured in a Word® document, and placed in

the Artifacts folder of the deliverable. This

first formal capture of non-functional re-

quirements serves as a backdrop for much

more serious consideration later in design.

Deliverable #6. User Interface Design:

The objective of deliverable 6 is to take a

second look at the user interface prototype

(UI) and be certain that the customer and

users are ‘on board’ with the interface and

ensure any additional functional require-

ments suggested by the interface are now

obtained. As the first deliverable in the sec-

ond semester, this deliverable is less de-

manding by design but nevertheless impor-

tant. Teams reestablish meeting schedules

and revisit their status in the application de-

velopment. Teams have a reasonably good

set of Use Cases, an Analysis Model, and

now an iterated user interface. Students

select or extend their interfaces using a va-

riety of technologies (HTML, XML,

JavaScript, java server pages, and more).

But the main objective is to ease students

into the second semester and to rekindle the

importance of the UI and attempt to capture

a comprehensive set of requirements – as

much as possible.

c© 2006 EDSIG http://isedj.org/4/64/ August 28, 2006

ISEDJ 4 (64) Roggio 11

Principles of Usability and Utility are more

heavily emphasized than in the earlier deliv-

erable. Verification consists of comparing the

interface to use case specifications in order

to conclude all the functionalities found in

the use cases are in fact accommodated or

implied.

Deliverable #7 - Layered Architecture:

This deliverable establishes an architectural

baseline for detailed design work. As a

heavyweight deliverable for students, it con-

tains very critical design philosophy. As ap-

proximately the second iteration in the

Elaboration Phase of the RUP®, these activi-

ties include the identification of a suitable

architectural pattern on which to base the

software architecture. Once established,

(projects in the capstone sequence are nor-

mally web-based applications), layers are

named, major subsystems (with their inter-

faces) and packages are identified, and de-

pendencies noted. Essential design principles

are rigorously subscribed to in deciding

placement of components in layers. Design

principles such as divide-and-conquer, cou-

pling, cohesion, reuse, testability, and others

provide guidance for design decisions.

For the Model-View-Controller architectural

pattern, considerable time is spent on the

nature of the layers, their structure, coop-

eration, design elements within these layers,

and dependencies on components within

other layers (Figure 4). Notions of subsys-

tems and packages are again stressed, with

particular emphasis placed on the subsystem

interfaces. Subsystem responsibilities and

interfaces are clearly articulated. Accessing

the components in packages via their public

interface is emphasized to the same extent

as subsystems. The notion of a contract and

design by contract are again stressed. and

included.

Realizing subsystem interfaces (via collabo-

rating components such as other subsystems

or packages, or objects inside the realizing

subsystem or dependencies on other design

artifacts), are captured as much as possible.

The critical role of the software architect as

opposed to the role of the designer is pre-

sented. Once an architectural baseline is

established, a large degree of parallel detail

design and implementation by team mem-

bers may ensue.

 …

 …

 …

Presentation Layer

Application Layer

Middleware Layer

Subsystem name Package Name Subsystem name

Package name

Package name

Package name Subsystem name

Subsystem name Subsystem name

However many

However many

However many

… and additional layers such as Domain Layer and System Layer.

Figure 4. Template: Partial Layered Architectural Approach (generic)

c© 2006 EDSIG http://isedj.org/4/64/ August 28, 2006

ISEDJ 4 (64) Roggio 12

Students are expected to provide all design

models in Rational Rose® (Figure 4) and

provide Word® documents containing design

decisions as to why specific design elements

(subsystems and packages) were placed in

specific layers. The architecture is captured

in the Rose browser in the Logical View in a

package called Layered Architecture.

Deliverable #8, Detailed Design - Use

Case Realizations: Deliverable #8 con-

tains two deliverables. Part 1 is the devel-

opment of the Iteration Plan in sufficient de-

tail to support further detailed design and

construction. Part 2 is the development of

sequence diagrams (and communications

diagrams) for the basic course of events and

some additional scenarios in the use cases at

the subsystem and package context levels.

As teams progress into the Construction

Phase of the RUP, the iteration plan takes on

more significance than it had previously.

While the nature of iterations and the activi-

ties that constitute the initial and earlier it-

erations were adhered to by the develop-

ment teams, it is not until this deliverable

that a more detailed look at the iteration

plan is undertaken and documented. Be-

cause a baseline architecture is now estab-

lished and parallel development can take

place within the teams, the specific objec-

tives of an iteration that outlines iteration

objectives, required activities, expected arti-

facts, and criteria for objective assessment

become very necessary.

Construction iterations require the team

possess a full understanding of the objec-

tives for the current iteration and a ‘pretty

good’ understanding of the objectives of the

follow-on iteration. The objectives of this

‘next’ iteration may be impacted by the as-

sessment of the current iteration, so the

next iteration is not ‘locked in’ until the cur-

rent iteration is completed and assessed.

The iteration plan to guide Construction is

best laid out using a table. It is essential to

emphasize that iterations are time-boxed

and have definite, measurable objectives

that are candidly assessed at the conclusion

of the iteration. Because iterations are time-

constrained, it is more important to keep on

schedule and terminate iterations as in ac-

cordance with this schedule even if all objec-

tives of the iteration are not successfully

completed. Shortcomings can be rolled into

a subsequent iteration. It is more important

to keep the development progressing

smoothly in an established rhythm than to

extend the time of an iteration.

The first iteration is special. The first itera-

tions should address those features or re-

quirements that present the most risk to

successful development and (secondly) fea-

tures addressing core application functional-

ities. Equivalently, the first iteration should

address key features that can cause later

breakage. I advise students to address

those areas that ‘scare’ them the most.

Thus, I emphasize reducing risk over ad-

dressing core functionalities in the first itera-

tion.

Features that represent the essential learn-

ing of new tools or the basics of new tech-

nologies or learning about a totally new way

of doing business likely present risk. Activi-

ties that might be present a degree of risk

and/or cause concern to team members

might include customer authentication, link-

ing up to remote nodes and platforms, es-

tablishing ‘secure’ sessions and communica-

tions between different objects some of

which might be brokered. Even some mun-

dane tasks such as the ability to accept a

sample browser input, communicate this

request to an application server, have this

server connect to a database server, and

then return a response may present consid-

erable risk for students. Activities such as

these present risks to the team as a devel-

opment unit, and these risks must to be

mitigated early. Subsequent to the initial

iteration, follow-on iterations address re-

quirements whose design and implementa-

tion present steadily decreasing risk.

It is essential for early construction itera-

tions to address key core functionalities as

captured in specific scenarios. Planning the

contents of iterations is critically important

in order to track successful development.

Without identification of addressing specific

scenarios in the objectives of the construc-

tion iterations, it is indeed difficult to trace

that all required functionality is accommo-

dated. Traceability of design entities and

subsequent implementation back to use case

specifications is a must (Reed, 2002).

Deliverable 8 also requires the development

of one interaction diagram (sequence dia-

gram or communications diagram) for each

use case. At a minimum, the basic course of

events is modeled illustrating the collabora-

c© 2006 EDSIG http://isedj.org/4/64/ August 28, 2006

ISEDJ 4 (64) Roggio 13

tion of design objects required to realize the

scenario. In addition to the interaction dia-

gram for each use case, a static (class) dia-

gram, the VOPC, is required that shows the

structure of the objects required in the sce-

nario. Their attributes and operations are to

be continuously reviewed and modified if

necessary.

The required interaction diagrams at this

level must show the interacting objects and,

for subsystems, their interfaces only. It is

important to realize the abstraction of the

subsystem at this level and the role it plays

in the interaction diagram. The presence of

an interface as an object in a sequence dia-

gram is quite a sufficient abstraction at this

time. The details of the subsystem design

and realization of the interfaces are ad-

dressed in Deliverable #9. It is the identifi-

cation of subsystem responsibilities (and not

implementation) that is stressed in Deliver-

able #8.

The sequence diagrams must be fully anno-

tated with Notes and other design elements

as necessary to support Detail Design and

implementation. While other scenarios in a

Use Case may offer sufficient complexity and

require modeling via a sequence diagram

and VOPC, this assignment, only specifically

required a single scenario (the basic course

of events) from each use case be modeled

and added to the Rose browser for this ap-

plication (This will be changed in the future).

Deliverable #9. Detailed Design - Sub-

system Design: Deliverable #9 extends the

objectives of Deliverable #8 in that each

subsystem must now be realized; that is,

undergo detail design. Particularly impor-

tant is the model that indicates exactly how

classes or other design entities collaborate in

accommodating the responsibilities of the

individual subsystems. For example, access-

ing a relational database system will likely

require persistency. So a simple read()

method contained in the interface to a sub-

system and captured in the context level

sequence diagram of Deliverable #8 is ‘real-

ized’ or elaborated upon by a persistency

mechanism that is non-trivial. Collaborating

objects designed by the developer coupled

with those imported from, say, the java API

must be shown, even if the collaborating

classes in java.sql are in a different package

in a different architectural layer (usually

Middleware layer).

There may be a number of subsystems

whose interfaces need realization (Figure 5).

Further, some of the signatures constituting

the interface of a subsystem may not require

a persistency mechanism. They may in fact

require some computations or some data

manipulation or other application-oriented

tasks not requiring persistent objects. For a

given scenario, Deliverable #9 requires the

detailed design of subsystems that were ab-

stracted in Deliverable #8.

Sequence Diagrams from deliverable #8

provide a context in which the subsystems

represented only by their interfaces are ob-

jects. In Deliverable #9, each subsystem is

(name interface)
<<interface>>

Maintain Accounts

…

… …

1..2

*

Add properties, methods,
 and anything else
 necessary to realize
 the interface.

Shows a dependency
between this object (in
subsystem) and an object
in another package.

Note: the interface is
“realized” by the combina-
tion of objects and de-
pendencies.

XXXX Package

AddRec(xxxx, xx) bool
UpdateRec(xx, xx) int
DeleteRec(xxxxxx) int
 etc……

Figure 5. Subsystem Interface and the Realizations – (generic)

c© 2006 EDSIG http://isedj.org/4/64/ August 28, 2006

ISEDJ 4 (64) Roggio 14

modeled by providing a sequence diagram

where all entities in the subsystem (or de-

pended upon by the subsystem) that con-

tribute to satisfying a behavior of the sub-

system are modeled. These subsystem be-

haviors may involve a proxy class that

represents the subsystem interface used to

delegate specific activities within the subsys-

tem itself. These sequence diagrams must

be fully annotated and be accompanied with

a VOPC. The Subsystem Design is included

in the Rose browser in the Use Case Realiza-

tions package within the Design Model within

the Logical View.

Deliverable #10. Class Design and Im-

plementation 1: Deliverable #10 requires

each team to revisit and refine VOPCs for

each use case to determine if the connec-

tions among objects should be associations

or dependencies. As the first iteration in

Construction, this deliverable also includes

implementing the first and second iterations

in accordance with the iteration plan. De-

tailed assessments of iterations are an abso-

lute and must indicate progress toward

completing the application. Feedback from

the assessment of iterations 1 and 2 must

feed into (rolled into) iteration #3, at which

time the goals for iteration #3 can be final-

ized and its development may start (Deliver-

able #11).

Part of all the Construction iterations in-

cludes the designing, development, and im-

plementation of tests. Objective assessment

of the iteration is used to measure not only

the quality of the iteration but also the

evolving quality of the total application. The

assessment of the iteration includes a post-

mortem: What went well? What went ‘less

than well?’ What features / objectives of the

iteration were not met? Other lessons

learned?

Source code components used to support

iterations 1 and 2 (fully functional code plus

test plans, tests developed, implemented

tests and their results) are included in the

deliverable. All source code must adhere to

standards of good programming. These

modules are all linked into the Rose Browser

within the Component View.

Deliverable 11. Implementation 2: This

deliverable was the final one. Formal dem-

onstrations were presented in class by team

members. Black box demonstrations pro-

vide validation from an end-user perspective

and are based on use case scenarios. An

updated iteration plan, and source code, a

post mortem document, and the team dem-

onstration constituted the deliverable.

The project post mortem addresses exactly

how the use cases drove development, how

the architecture was central to design and

implementation, and reaction of team ex-

periences to time-boxed iterations.

5. CONCLUSIONS

The two course sequence described has

been run three times in the IS program at

UNF. At the time of this writing, the se-

quence is starting again with a few changes

discussed ahead.

An informal email survey was recently sent

out to students who had completed the cap-

stone sequence most recently (Spring

2005). The survey questions were quite

general in nature and were distributed to

gain informal feedback and suggestions from

those students who wished to provide feed-

back. Questions were ‘open-ended.’ This al-

lowed respondents to write as much or as

little as they wished. About a fifty percent

response rate was realized.

While a few suggestions were offered (and

are under consideration), the vast majority

of responses were extremely positive and

encouraging. Recognizing that the students

taking this sequence are not business ma-

jors and frequently have a moderate to

heavy background in computer course work,

the results may not be surprising. These

students expect to enter a business enter-

prise (not a scientific or engineering enter-

prise) and participate in full-time software

development activities. Many will start as

entry-level programmers and aspire to more

senior positions once they mature in their

jobs and learn the enterprise.

Interestingly, every respondent stated that

they were very pleased that the emphasis in

the course was on process rather than on a

specific application developed. Several stu-

dents stated that while they had been re-

quired to learn some elementary program

design using pseudo-code or flowcharting,

none had an overall appreciation of the

range of activities involved in developing a

total application – from vision documents

through to implementation and assessment.

As the RUP® is growing very quickly in

c© 2006 EDSIG http://isedj.org/4/64/ August 28, 2006

ISEDJ 4 (64) Roggio 15

popularity in North Florida, a number of stu-

dents were quickly employed principally be-

cause they had gained familiarity with this

process and Rational Rose®. A number had

to learn additional technologies, such as

Java Server Pages, Java Script, servlets, and

other programming technologies that further

assisted in their marketability.

A number of students cited that since they

anticipated entering the corporate workplace

in a programming-related job, additional

emphasis on business topics would not have

been as valuable as the additional software

development experiences gained from the

instructional approach undertaken in the

capstone sequence.

There were several suggestions for im-

provement. Although most respondents

stated that there was sufficient time for pro-

gramming, most said that this activity was

too hurried. Since all members of the teams

did not perform the same duties, a couple of

respondents were not satisfied with their

own individual contribution to programming.

A couple of individuals on teams who were

somewhat familiar with some of the pro-

gramming languages / scripts used in the

application development dominated the pro-

gramming activities. This proved to be a

detriment to others who wished to have had

more time to learn the technologies. More

time was needed here.

One respondent cited that he would have

liked to have had formal discussions on in-

terview and questionnaire development.

Most respondents also claimed the amount

of work needed was far in excess of what

they had been anticipating from those who

had taken the capstone sequence using a

more traditional approach supported by the

Whitten textbook. (It is important to note

that the capstone sequence continues to be

offered at UNF using the Whitten book. This

approach does indeed require the develop-

ment of a total application. Most of these

offerings stress a database approach or in-

formation engineering approach to software

development, but do not require the RUP.)

Having taught the sequence both ways, the

workload using the non-RUP approach is not

light at all.

While in the distinct minority, a couple of

students stated that while they enjoyed the

opportunity to learn the technologies, they

felt that they missed out on the managerial,

end-user, and the cost, budget, planning

aspects of a project. These students said

that it was not their intention to enter the

workplace in a programming role.

In retrospect, there are topics that were

presented that need more clarification. Lec-

tures need to be leaner, and self and peer

reviews, optional until the end of the course,

definitely need to be a key component of

each deliverable. Time devoted to testing

and the development of test plans was woe-

fully insufficient. Criteria for iteration as-

sessment were not spelled out as well as

they should have been. More time to learn

additional technologies must be provided,

and more time must be allowed for imple-

mentation.

It is my firm belief that this robust approach

to software development will continue to be

very successful. Underpinned by team de-

velopment using specific, state-of-the-art,

highly-marketable technologies, the se-

quence overall appears to prepare UNF’s

students well for the constituency we serve.

Carefully specified deliverables using an it-

erative approach based on a base-lined ar-

chitecture will yield a higher quality product.

6. REFERENCES

Heumann, Jim, “The Five Levels of Require-

ments Management Maturity,”

http://www.therationaledge.com/content

/feb_03/f_managementMaturity_jh.jsp

Kruchten, Philippe, The Rational Unified

Process – An Introduction, 3rd edition,

Addison-Wesley, 2004 ISBN:0-321-

19770-4

Kulak, Daryl, and Eamonn Guiney, Use

Cases – Requirements in Context, 2nd

edition, Addison-Wesley, 2004 ISBN: 0-

321-15498-3

Leffingwell, Dean and Don Widrig, “The Role

of Requirements Traceability in System

Development,” http://www

.therationaledge.com/content/sep_02/m

_requirementsTraceability_dl.jsp

Lethbridge, Timothy and Robert Langaniere,

Object-Oriented Software Engineering,

2nd edition, McGraw-Hill, 2001 ISBN:

0072834951,www.mcgraw-hill.co.uk

/textbooks/lethbridge

c© 2006 EDSIG http://isedj.org/4/64/ August 28, 2006

ISEDJ 4 (64) Roggio 16

Quatrani, Terry, Visually Modeling with Ra-

tional Rose 2002 and UML, Addison-

Wesley, 3rd edition, 2003 ISBN: 0-201-

72932-6

Reed, Paul, “Transitioning from Require-

ments to Design,” http://www

.therationaledge.com/contentjun_02/m_

requirementsToDesign_pr.jsp

Roggio, Robert, “Establishing Computer User

Groups in a Metropolitan Area,” Proceed-

ings of ISECON’04, Newport, Rhode Is-

land, Nov 2004.

Whitten, Jeffrey L., Lonnie D. Bentley, Kevin

C. Dittman, Systems Analysis and De-

sign Methods, 5th edition, Irwin,

McGraw-Hill, 2001.

c© 2006 EDSIG http://isedj.org/4/64/ August 28, 2006

