
Volume 4, Number 81 http://isedj.org/4/81/ September 22, 2006

In this issue:

Metaphors, Polymorphism, Domain Analysis, and Reuse: Teaching
Modeling in the Object-Oriented Paradigm

Leslie J. Waguespack, Jr
Bentley College

Waltham, MA 01254 USA

Abstract: Object-oriented programming has become a mainstay of computing curricula over the
last decade. Although its industrial promise for improving productivity, particularly by way of
enabling extensive reuse, has propelled it to an essential status, it is usually taught in a vacuum
of little or no effective modeling theory or practice. In this paper we argue that this vacuum robs
most students of their potential to both understand or professionally profit from the complex mass
of syntax and class library detail in which they are drowned in most OO development courses.
The paper reviews OO-based reuse, the current state of modeling in IS2002 national curriculum
and contemporary systems analysis texts, the underlying behavior and metaphor-driven principles
of domain modeling and a framework for recovering the reuse benefits of the OO paradigm in IS
education.

Keywords: modeling, object-oriented modeling, behavior-driven modeling, metaphor-driven mod-
eling, domain modeling, systems analysis and design curricula, IS curricula

Recommended Citation: Waguespack (2006). Metaphors, Polymorphism, Domain Analysis,
and Reuse: Teaching Modeling in the Object-Oriented Paradigm. Information Systems Education
Journal, 4 (81). http://isedj.org/4/81/. ISSN: 1545-679X. (Also appears in The Proceedings of
ISECON 2005: §2332. ISSN: 1542-7382.)

This issue is on the Internet at http://isedj.org/4/81/

ISEDJ 4 (81) Information Systems Education Journal 2

The Information Systems Education Journal (ISEDJ) is a peer-reviewed academic journal
published by the Education Special Interest Group (EDSIG) of the Association of Information
Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1545-679X. • First issue: 8 Sep 2003.
• Title: Information Systems Education Journal. Variants: IS Education Journal; ISEDJ. • Phys-
ical format: online. • Publishing frequency: irregular; as each article is approved, it is published
immediately and constitutes a complete separate issue of the current volume. • Single issue price:
free. • Subscription address: subscribe@isedj.org. • Subscription price: free. • Electronic access:
http://isedj.org/ • Contact person: Don Colton (editor@isedj.org)

2006 AITP Education Special Interest Group Board of Directors

Stuart A. Varden
Pace University

EDSIG President 2004

Paul M. Leidig
Grand Valley State University
EDSIG President 2005-2006

Don Colton
Brigham Young Univ Hawaii

Vice President 2005-2006

Wendy Ceccucci
Quinnipiac Univ
Director 2006-07

Ronald I. Frank
Pace University

Secretary 2005-06

Kenneth A. Grant
Ryerson University
Director 2005-06

Albert L. Harris
Appalachian St

JISE Editor

Thomas N. Janicki
Univ NC Wilmington

Director 2006-07

Jens O. Liegle
Georgia State Univ
Member Svcs 2006

Patricia Sendall
Merrimack College

Director 2006

Marcos Sivitanides
Texas St San Marcos
Chair ISECON 2006

Robert B. Sweeney
U South Alabama
Treasurer 2004-06

Gary Ury
NW Missouri St
Director 2006-07

Information Systems Education Journal 2005-2006 Editorial and Review Board

Don Colton
Brigham Young Univ Hawaii

Editor

Thomas N. Janicki
Univ of North Carolina Wilmington

Associate Editor

Samuel Abraham
Siena Heights U

Tonda Bone
Tarleton State U

Alan T. Burns
DePaul University

Lucia Dettori
DePaul University

Kenneth A. Grant
Ryerson Univ

Robert Grenier
Saint Ambrose Univ

Owen P. Hall, Jr
Pepperdine Univ

Jason B. Huett
Univ W Georgia

James Lawler
Pace University

Terri L. Lenox
Westminster Coll

Jens O. Liegle
Georgia State U

Denise R. McGinnis
Mesa State College

Therese D. O’Neil
Indiana Univ PA

Alan R. Peslak
Penn State Univ

Jack P. Russell
Northwestern St U

Jason H. Sharp
Tarleton State U

Charles Woratschek
Robert Morris Univ

EDSIG activities include the publication of ISEDJ, the organization and execution of the annual
ISECON conference held each fall, the publication of the Journal of Information Systems Education
(JISE), and the designation and honoring of an IS Educator of the Year. • The Foundation for
Information Technology Education has been the key sponsor of ISECON over the years. • The
Association for Information Technology Professionals (AITP) provides the corporate umbrella under
which EDSIG operates.

c© Copyright 2006 EDSIG. In the spirit of academic freedom, permission is granted to make and
distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document
is presented, and it is not modified in any substantial way.

c© 2006 EDSIG http://isedj.org/4/81/ September 22, 2006

ISEDJ 4 (81) Waguespack 3

Metaphors, Polymorphism,

Domain Analysis, and Reuse:

Teaching Modeling in the

Object-Oriented Paradigm

Leslie J. Waguespack, Jr., Ph.D.

LWaguespack@Bentley.edu
Computer Information Systems Department, Bentley College

Waltham, Massachusetts, 01254 USA

Abstract

Object-oriented programming has become a mainstay of computing curricula over the last

decade. Although its industrial promise for improving productivity, particularly by way of ena-

bling extensive reuse, has propelled it to an essential status, it is usually taught in a vacuum

of little or no effective modeling theory or practice. In this paper we argue that this vacuum

robs most students of their potential to both understand or professionally profit from the com-

plex mass of syntax and class library detail in which they are drowned in most OO develop-

ment courses. The paper reviews OO-based reuse, the current state of modeling in IS2002

national curriculum and contemporary systems analysis texts, the underlying behavior and

metaphor-driven principles of domain modeling and a framework for recovering the reuse

benefits of the OO paradigm in IS education.

Keywords: object-oriented modeling, behavior-driven modeling, metaphor-driven modeling,

domain modeling, systems analysis and design curricula, IS curricula.

1. INTRODUCTION

The use of Java, C++, C# and other object

oriented programming languages is now

commonplace in programming courses in IS

curricula. Although one of the greatest moti-

vations for the move from procedural lan-

guages to object oriented (OO) program-

ming has been to increase code reuse, a

comprehensive philosophy of reuse through-

out the software life cycle (requirement,

analysis, design and testing models) is

largely absent. The study of domain analysis

is virtually non-existent in computing curric-

ula although it is at the core of reuse across

the full life cycle. Domain analysis is analy-

sis focused on the environment surrounding

any particular system with the intent of

identifying those business rules and re-

quirements that are common to any applica-

tions within the domain. Once achieved,

domain analysis enables significant im-

provements in the economic, reliability and

time-to-market aspects of projects that de-

velop additional systems within the same

domain – a product line of applications in

that domain.

Classically trained IS professionals are not

prepared to conduct domain analysis and

design for reuse. They have been carefully

conditioned to focus on applications rather

than upon the domain of any specific appli-

cation. They are most likely to see software

resources as collections of programs as op-

posed to an integrated model of an organi-

zation’s information processing, much less

as an instance of systems in a domain (Ja-

cobson, Griss & Jonsson 1997). Brooks

(Brooks 1987) argues that while there may

be no “silver bullet,” we can nurture gifted

designers. Enhancing requirements analysis,

systems analysis and design through reuse

and domain awareness facilitates what

Brooks calls “elegant solutions.”

This paper briefly surveys the current state

of OO modeling in the IS2002 curriculum

and contemporary systems analysis and de-

c© 2006 EDSIG http://isedj.org/4/81/ September 22, 2006

ISEDJ 4 (81) Waguespack 4

sign texts. It summarizes the OO paradigm’s

key role in achieving industrial-scale, enter-

prise-wide reuse. It examines the need for

OO modeling with a focus on requirement

scope to exploit reuse opportunities. The

paper describes the behavior-driven abstrac-

tion approach, modeling based upon meta-

phors, that is integral to effective domain

analysis; and essential to IS education.

2. IS2002 AND MODELING

There are no specific learning units targeting

object modeling in IS2002 (Gorgone, Davis,

Feinstein, Longenecker 2002). The only ref-

erence to object modeling in all of IS2002 is

a reference to a 1994 paper on domain

modeling (Waguespack 1994) that is not

included in the content of the learning units

or the course descriptions. The object para-

digm per se is not addressed, as the as-

sumption appears to be that programming in

object-oriented languages somehow results

in object oriented analysis and design prac-

tice.

In many IS2002 implementations only the

IS2002.7 course addresses modeling specifi-

cally and that is usually as one of the forms

of specification dialect (ex. DFD, ERD, EER,

[more recently] UML). Object oriented

analysis is not specified in IS2002 although

references to object-orientation imply that it

is a departure from “structured” and “event-

driven” “design” approaches. There are five

IS2002 courses where object oriented mod-

eling would seem to be an essential concept:

2002.5 Programming, Data, File and

Object Structures,

2002.7 Analysis and Logical Design,

2002.8 Physical Design and Implemen-

tation with DBMS,

2002.9 Physical Design and Implemen-

tation in Emerging Environ-

ments, and

2002.10 Project Management and Prac-

tice

Only in IS2002.5 are OO concepts like in-

heritance or polymorphism addressed in the

learning units. And the focus is on the con-

struction of program mechanisms rather

than representing functional requirements.

Systems Analysis Texts

Not surprisingly the lack of emphasis on do-

main analysis and behavior-driven modeling

in the model curricula is mirrored in texts

targeted for the IS2002.7 course. These

books are tasked with covering a vast ex-

panse of information system issues includ-

ing: defining systems, organizational behav-

ior in development, project management,

cost/benefit analysis, and (along the way)

functional and operational requirements ac-

quisition and specification, “modeling.” Table

1 below presents a cursory survey of content

coverage in eight currently used texts.

Table 1 – Systems Analysis Text Coverage

Legend
 SDLC – software development life cycle
 PM – project management
 DFD – data flow diagramming
 ER/EER – entity relationship / extended ER

Level of Coverage
 Y – covered (a stand alone treatment)
 N – not covered
 L – limited coverage (introductory only)
 U – covers Unified Process specifically

(This survey is not intended to criticize the

authors, but rather to demonstrate the

dearth of treatment that modeling receives

in the typical computing student’s educa-

tion.)

Arlow (Arlow & Neustadt 2002) focuses al-

most exclusively on UML syntax with limited

diversion into the conceptual nature of sys-

Textbook

A
rl
o
w
’0
2

H
ar
ri
s’
0
3

H
o
ff
er
’0
2

H
o
ff
er
’0
5

S
ch

ac
h
’0
4

S
tu
m
p
f’
0
5

D
en

n
is
’0
5

S
at
zi
n
g
er
’0
2

SDLC
N Y Y Y N L L Y

PM
LU Y Y Y LU LU LU Y

DFD
N L Y Y N Y Y L

ER/EER
N Y Y Y N N N Y

UML

Use Case Y L L L Y Y Y Y

UML

Class Y L L L Y Y Y Y

UML

Sequence Y L L L Y Y Y Y

Other

UML Y N L L Y Y Y L

Behavior

Driven
Modeling

N N N N N N N N

c© 2006 EDSIG http://isedj.org/4/81/ September 22, 2006

ISEDJ 4 (81) Waguespack 5

tems or SDLC – the minimum necessary to

address the unified process.

Harris’s (Harris 2003) treatment of OO is

effectively cosmetic (primarily notation with

little paradigm discussion). It is treated al-

most as a pure syntactic alternative to ER

and contains no pedagogical support for be-

havior-driven modeling.

Hoffer (Hoffer & Valacich 2002) focuses on a

traditional SDLC discussion of development

with heavy investment in process (DFD) and

data (ER) modeling as the driving motiva-

tion. The final chapter is a genuflection to

object orientation with a not-so-carefully

chosen vocabulary for definition and expla-

nation of object-oriented concepts.

Hoffer (Hoffer & Valacich 2005) basically

takes from the 3rd edition and distributes

the OO content that was the final chapter

into the sections where they believe the con-

tent is “interchangeable.” There is little or

no apparent expansion of the treatment of

OO either in the modeling or project archi-

tecture sense in this update of the previous

edition.

Schach (Schach 2004) dives past most dis-

cussion of SDLC into the use of the unified

process and the diagrams therein. It also

uses several symbols from (Jacobsen, Griss

& Jonsson 1997) (e.g. interface, entity, con-

trol objects) reminiscent of component / de-

ployment documentation in the Jacobsen’s

reuse text. However, the symbols are not

supported by significant concept develop-

ment.

Stumpf (Stumpf & Teague 2005) introduces

a domain model as a concept (not common

in the others), however the definition / de-

scription of it is virtually indistinguishable

from an ER model of the application space.

Modeling appears fixated on the externally

visible actions of the current system imple-

mentation rather than any focus on business

rules.

Dennis (Dennis, Wixom & Tegarden 2005)

offers the most complete content among

these texts regarding object-oriented analy-

sis. The treatment appears to focus on re-

producing perceived system interface func-

tion rather than discovering underlying busi-

ness rules to guide the domain modeler.

Satzinger (Stazinger, Jackson & Burd 2002)

intermixes DFD with ER with UML syntax to

create a curious jumping back and forth be-

tween modeling paradigms. There is no

treatment of behavior-driven modeling or

the use of polymorphism for problem struc-

turing or analysis specification.

Each of these texts addressed a market and

pedagogical standard set in the mid-1990’s

when the “object modeling wars” had only

recently been settled with OMG ‘s blessing of

UML. As UML and related methodologies are

yet evolving, it is no surprise that the focus

is almost universally on syntax alone. Table

1 indicates that no currently available text

addresses behavior-driven modeling. In the

following section we describe domain analy-

sis including behavior-driven modeling based

on metaphors and how they impact IS pro-

fessional practice and reuse.

3. OBJECT-ORIENTED REUSE

The OO paradigm encompasses a broad

range of concepts for describing, program-

ming, constructing and managing informa-

tion systems (Figure 1). Each development

project adopting OO in one or more of these

ways applies the paradigm to building and

sustaining systems. Designers can con-

sciously use OO to implant reusability into a

development product. Specifically because of

inheritance and polymorphism OO surpasses

prior paradigms in its potential to support

planned reuse.

Figure 1: Facets of the Object-Oriented

Paradigm

Object-Oriented Tools

Software tools aid developers in manipulat-

ing abstractions at a higher level than lines

of code or program fragments. Their design-

Object Oriented

Systems Engineering

Modeling

OOA

OOD

OODB

UML

Programming

Languages

Simula

Smalltalk

Objective C

C++

Eiffel

Tools

GUI Builders

Class Libraries Frameworks

OODB

Distributed Objects

c© 2006 EDSIG http://isedj.org/4/81/ September 22, 2006

ISEDJ 4 (81) Waguespack 6

ers define a particular interpretation or sub-

set of the modeling paradigm’s abstractions

to simplify or streamline the developer’s

tasks. Simplification exacts a price by either

limiting expressive power or by requiring a

high degree of conformance to the tool de-

signer’s interpretation of the modeling para-

digm. Object oriented development tools are

no different.

Object oriented tools capture the expressive

power of OO to varying degrees of com-

pleteness and/or fidelity (Agarwal 1996).

Because these tools are the expressions of

OO that practitioners most frequently ex-

perience, they have formed the popular

definition of object orientation.

Exploiting OOSE for Reuse

Each of the OO technologies depicted in Fig-

ure 1 enables reuse. OO modeling enables

the evolution of description built upon spe-

cialization of fundamental system require-

ments. OO programming enables the reuse

of software function either through replicat-

ing objects based upon class definitions or

the derivation of new structures through

subclasses. OO tools provide component in-

tegration and transformation along pre-

scribed extension points defined in the archi-

tecture of a framework or tool kit. OOSE in-

tegrates the technologies and stewards the

development and management of system

knowledge in the class library. In every

case, however the benefits of OO technolo-

gies depend completely upon the efficacy of

the model of requirements (business rules

and metaphors) and whether or not they can

be effectively and efficiently represented and

reused with the object tools. The next sec-

tion addresses modeling to enable the bene-

fits of object-oriented development.

4. DOMAIN MODELING

Information system modeling depends upon

a specific requirement scope – the context

within which an artifact is described. (See

Figure 2.) Object orientation’s effectiveness

in reuse is critically sensitive to requirement

scope.

Requirement Scope

Analysts and designers may consider a

range of scopes when describing an informa-

tion system artifact. We define three levels

of scope for reference:

Figure 2: Requirement Scope

Application: the collection of information

attributes and behaviors sup-

porting a business function,

System: the collection of applications

and their interrelationships

that support a functional area

within an enterprise, and

Enterprise: the collection of systems that

encompass the business in-

formation and practices defin-

ing the operation of the enter-

prise or industry as a whole.

Most programming language based treat-

ments of object identification and specifica-

tion (Coad & Yourdon 1991, Coad 1992;

Nerson, 1992; Rubin & Goldberg 1992) ex-

amine modeling within a single application.

Although programming focuses almost ex-

clusively on constructing individual applica-

tions, reuse depends on differences and

similarities that can be detected and pro-

jected across applications and systems. Con-

sider the contemplation appropriate when

attempting to craft a class library that must

support a family of applications. Inheritance

and polymorphism structures must consider

the next higher level of relevant requirement

context to ensure that similarities and differ-

ences are grounded in domain level business

rules rather than application level design

choices. This entails understanding and

managing domain issues with more complex

interrelationships – domain modeling.

Application
Scope

System
Scope

Enterprise

Scope

c© 2006 EDSIG http://isedj.org/4/81/ September 22, 2006

ISEDJ 4 (81) Waguespack 7

Implications for IS Education

Computing students infrequently encounter

development exercises at the system or en-

terprise level. However, because require-

ment scope frames the questions of system

efficiency and cost effectiveness, the same

requirement or design question may require

quite a different answer when posed in each

of the three reference scopes described

above.

To conduct domain modeling, the student

must make explicit abstraction decisions –

similarity and difference particularly with

regard to inheritance and polymorphism.

These decisions will have to span systems

and eventually the enterprise. These deci-

sions depend upon a qualitatively different

collection of requirement and modeling

questions than have been the tradition in IS

education. Object-oriented technology can-

not achieve cost-effectiveness without do-

main analysis.

Object oriented systems engineering and

component based systems engineering are a

driving force in IS development for the fore-

seeable future (Duggan 2002). They are

based upon domain modeling using behav-

ior-driven abstraction and the formulation of

metaphors. Educating future systems pro-

fessionals in domain modeling is at least as

important as teaching OOP – if not more so.

Educating students in domain modeling re-

quires an emphasis on behavior-driven mod-

eling.

5. BEHAVIOR-DRIVEN MODELING

“The greatest thing by far is to be a mas-

ter of metaphor. It is the one thing that

cannot be learnt from others; and it is

also a sign of genius, since a good meta-

phor implies an intuitive perception of

the similarity in dissimilar.” Aristotle

Modeling revolves around three views of

system: functional, static and dynamic:

Functional – user visible, Static – structure,

and Dynamic – interaction of objects to ac-

complish the user visible functionality. In

UML these views are accommodated by use

cases, class / object diagrams, and by activ-

ity, sequence and interaction diagrams, re-

spectively. The modeling process is one of

discovering the essential characteristics of a

system in these three dimensions and then

constructing a system of metaphors that

honors that essence absent unnecessary

constraints. In behavior-driven modeling we

refer to these metaphors as business rules.

Focusing on business rules is a key to broad-

based reuse.

Business Rules

We use business rule to mean an “architec-

tural facet” of a behavior-driven model.

Business rules are constraints that define

the variety and range of variation of behav-

iors that are allowable among autonomously

defined classes / objects. (As definitions of

what is “allowable,” business rules shape a

model’s future evolution as well as its pre-

sent structure and behavior.) A business rule

may be an “integrity constraint” as in entity-

relationship models that determine the con-

sistency of relational operations applied to

defined entities. It may define a formula of

computation or pre-/post-conditions of busi-

ness actions. Business rules emanate from

within the application, system or enterprise

scope of a requirement being modeled. A

business rule defined within a particular

scope projects its interpretation throughout

any subordinate scopes (i.e. a business rule

defined within a system scope extends to

any applications within that scope as well.).

Variations on a business rule at a subordi-

nate level (e.g. a subclass or method over-

ride) must conform to the business meta-

phor that the original rule prescribed. This

conformity not only maintains the metaphor

but reinforces it and enables polymorphism

and a continuity of understanding among

developers and users alike.

Contrary to a business rule, an accident of

implementation denotes a behavior per-

ceived in a system that is not defined by a

business rule, but rather is the legacy of a

designer’s (or user’s) choice of presenting or

combining some set of otherwise legal sys-

tem behaviors. Accidents of implementation

commonly arise from choosing a particular

implementation style or technology. Busi-

ness rules seldom (if ever) arise from

choices of batch vs. interactive or text vs.

multi-media, for example. They more often

arise (more insidiously) from the common

practice of users formed by habit rather than

business intention.

The upshot of this way of thinking is that

achieving an “exact” object model of the

current system’s behavior (modeling the

system with “accidents of implementation” in

c© 2006 EDSIG http://isedj.org/4/81/ September 22, 2006

ISEDJ 4 (81) Waguespack 8

tact) actually obscures the reality of the

business rules. This does not lead to exten-

sive reuse potential but often leads to an

otherwise “process driven” model represen-

tation depicted in object symbols. Behavior-

driven modeling results in object models

that leave the “choices of implementation”

up to the implementer constrained only by

the business rules that define the business

requirements.

A Behavior-Driven Example

As a simple example consider modeling the

routine activity of reconciling a checkbook,

matching one’s personal records with those

of the banking institution. By way of con-

trast consider the results of traditional proc-

ess-driven and data-driven approaches be-

fore the results of a behavior-driven thought

process.

Procedure-driven modeling focuses on the

steps naturally evident in the current prac-

tice of reconciliation: entering transactions

in the check register, receiving a monthly

statement, and merging the entries of both

to resolve any differences. This approach

commonly results in a singled-threaded, se-

quential depiction of problem domain activi-

ties.

Data-driven modeling would more often fo-

cus on the questions that would need an-

swers in the reconciliation process: “What

information is recorded on a transaction re-

cord?” and “What information indicates the

consistency of a register entry with the

bank’s information?“ This approach com-

monly results in a collection of un-sequenced

queries eventually to be organized in appli-

cation interface design.

Behavior-driven modeling attempts to iden-

tify underlying business rules that define

good behavior in the problem domain while

at the same time affixing those rules to the

tightest focus of responsibility possible:

“How does a check know if it is reconciled?,“

“What actions does a transaction take to

reach a reconciled state?” and “How are

checks, credit card and debit card transac-

tions the same and / or different?” This lat-

ter mode of modeling reveals that the prac-

tice of monthly statements is an accident of

implementation in the banking system rather

than a business rule defining reconciled

transactions. It reveals that although

checks, ATM and debit transactions may be

governed by differing permissions, they

share an identical core metaphor of transac-

tion. These realizations free the implementer

to consider real-time, wireless reconciliation

as soon as a bank clears a transaction or

including new transaction-based products

without modifying the underlying domain

model in any way.

Indeed, both procedure-driven modeling and

data-driven modeling suffer from their heri-

tage of sequential-thinking born of the “in-

put-process-output” model of computing.

Behavior-driven modeling accommodates

the more realistic asynchronous interaction

of business rules – an approach that does

not relegate the consideration of rarely ob-

served business rule combinations to the

status of exceptions.

6. SUMMARY

This paper briefly surveyed the current state

of OO modeling in IS2002 and commonly

used systems analysis and design texts for

IS2002.7. It summarized the OO paradigm’s

key role in achieving industrial-scale, enter-

prise-wide reuse. We conclude that the cur-

rent level of treatment of domain modeling

is not commensurate with the emphasis that

it is receiving in professional practice today.

We further examined the need for OO mod-

eling with a focus on requirement scope to

enable reuse opportunities.

We propose that to adequately prepare

computing graduates for domain modeling a

new emphasis on behavior-driven modeling

incorporating system-wide and enterprise-

wide analysis is needed. We have demon-

strated the distinction between these ap-

proaches and the traditional process-driven

and data-driven application focus that is

prevalent in current curricula and accompa-

nying texts. We conclude there is a clear

need for a detailed review of IS2002 and

associated national IS curricula models with

a purpose of increasing the integration of

behavior-driven and metaphor-based do-

main modeling in IS education.

7. REFERENCES

Agarwal, R., A.P. Sinha, and M. Tanniru

(1996), “Cognitive Fit in Requirements

Modeling: A Study of Object and Process

Methodologies,” Journal of Management

Information Systems, 12(2): 137-162.

c© 2006 EDSIG http://isedj.org/4/81/ September 22, 2006

ISEDJ 4 (81) Waguespack 9

Arlow, J. & I. Neustadt (2002), UML and the

Unified Process, Practical Object-

Oriented Analysis & Design, London, GB:

Pearson Education Limited.

Brooks, F. P. (1987), “No Silver Bullet: Es-

sence and Accidents of Software Engi-

neering,” IEEE Computer (April), 10-18.

Coad, P. (1992), “Object-Oriented Patterns,”

Communications of the ACM, 25(9),

152-159.

Coad, P., & E. Yourdon (1991). Object Ori-

ented Analysis (2nd Edition ed.). Engle-

wood Cliffs, NJ: Prentice-Hall.

Coad, P., & Yourdon, E. (1992). Object-

Oriented Design. Englewood Cliffs, New

Jersey: Prentice-Hall.

Dennis, A., B. Wixom & E. Tegarden, (2005).

Systems Analysis and Design with UML

Verson 2.0 An Object-Oriented Approach

(2nd Ed.), Hoboken, NJ: Wiley.

Duggan, J. (2002), “Successfully Selecting

Object-Oriented A&D Tools,” Gartner

Group.

Gorgone, John T., Gordon B. Davis, Joseph

S. Valacich, Heikki Topi, David L. Fein-

stein, and Herbert E. Longenecker, Jr.

(2002). Model Curriculum and Guidelines

for Undergraduate Degree Programs in

Information Systems, Association for

Computing Machinery (ACM), Association

for Information Systems (AIS), Associa-

tion of Information Technology Profes-

sionals (AITP).

Harris, D., (2003), Systems Analysis and

Design For Small Enterprises (3rd Ed.),

Boston, MA: Course Technology.

Hoffer, J., J. George & J. Valacich, (2002).

Modern Systems Analysis & Design (3rd

Ed.), Upper Saddle River, NJ: Pearson

Education, Inc.

Hoffer, J., J. George & J. Valacich, (2005).

Modern Systems Analysis & Design (4th

Ed.), Upper Saddle River, NJ: Pearson

Education, Inc.

Jacobson, O., M. Griss & P. Jonsson (1997).

Software Reuse. New York, NY: ACM

Press.

Nerson, J.M. (1992). “Applying Object-

Oriented Analysis and Design.” Commu-

nications of the ACM, 35(9), 63-74.

Rubin, K. S. & A. Goldberg (1992). “Object

Behavior Analysis.” Communications of

the ACM, 35(9), 48-62.

Schach, S., (2004). Introduction to Object-

Oriented Analysis and Design With UML

and the Unified Process, New York, NY:

McGraw-Hill/Irwin.

Satzinger, J., R. Jackson & S. Burd (2002).

Systems Analysis and Design in a

Changing World (2nd Ed.), Boston, MA:

Course Technology.

Stumpf, R. & L. Teague (2005). Object-

Oriented Systems Analysis and Design

with UML, Upper Saddle River, NJ: Pear-

son Education, Inc.

Waguespack, Leslie J., Jr. (1994), “Domain

Analysis is an Essential Skill of the OO

Analyst,” Proceedings of ISECON ‘94,

Louisville, KY, October.

c© 2006 EDSIG http://isedj.org/4/81/ September 22, 2006

