
Volume 5, Number 20 http://isedj.org/5/20/ June 6, 2007

In this issue:

A Perspective on the Use of Modeling Diagrams in Computer Science
and Information Systems Curricula

David R. Naugler Ken Surendran
Southeast Missouri State University Southeast Missouri State University
Cape Girardeau, MO 63701 USA Cape Girardeau, MO 63701 USA

Abstract: Modeling diagrams are used in Computer Science and Information Systems courses.
Different tools are used for different paradigms of system development. The authors share their
perspectives in using different modeling tools in systems analysis and design and database courses.
They discuss paradigm related issues in programming languages. They suggest using the diagrams
from both the paradigms (procedure centric and object oriented) with a view to enhancing the value
of the curricula.

Keywords: modeling tools, analysis and design, system development paradigms

Recommended Citation: Naugler and Surendran (2007). A Perspective on the Use of Modeling
Diagrams in Computer Science and Information Systems Curricula. Information Systems
Education Journal, 5 (20). http://isedj.org/5/20/. ISSN: 1545-679X. (Also appears in The
Proceedings of ISECON 2005: §3364. ISSN: 1542-7382.)

This issue is on the Internet at http://isedj.org/5/20/

ISEDJ 5 (20) Information Systems Education Journal 2

The Information Systems Education Journal (ISEDJ) is a peer-reviewed academic journal
published by the Education Special Interest Group (EDSIG) of the Association of Information
Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1545-679X. • First issue: 8 Sep 2003.
• Title: Information Systems Education Journal. Variants: IS Education Journal; ISEDJ. • Phys-
ical format: online. • Publishing frequency: irregular; as each article is approved, it is published
immediately and constitutes a complete separate issue of the current volume. • Single issue price:
free. • Subscription address: subscribe@isedj.org. • Subscription price: free. • Electronic access:
http://isedj.org/ • Contact person: Don Colton (editor@isedj.org)

2006 AITP Education Special Interest Group Board of Directors

Stuart A. Varden
Pace University

EDSIG President 2004

Paul M. Leidig
Grand Valley State University
EDSIG President 2005-2006

Don Colton
Brigham Young Univ Hawaii

Vice President 2005-2006

Wendy Ceccucci
Quinnipiac Univ
Director 2006-07

Ronald I. Frank
Pace University

Secretary 2005-06

Kenneth A. Grant
Ryerson University
Director 2005-06

Albert L. Harris
Appalachian St

JISE Editor

Thomas N. Janicki
Univ NC Wilmington

Director 2006-07

Jens O. Liegle
Georgia State Univ
Member Svcs 2006

Patricia Sendall
Merrimack College

Director 2006

Marcos Sivitanides
Texas St San Marcos
Chair ISECON 2006

Robert B. Sweeney
U South Alabama
Treasurer 2004-06

Gary Ury
NW Missouri St
Director 2006-07

Information Systems Education Journal 2005-2006 Editorial and Review Board

Don Colton
Brigham Young Univ Hawaii

Editor

Thomas N. Janicki
Univ of North Carolina Wilmington

Associate Editor

Samuel Abraham
Siena Heights U

Tonda Bone
Tarleton State U

Alan T. Burns
DePaul University

Lucia Dettori
DePaul University

Kenneth A. Grant
Ryerson Univ

Robert Grenier
Saint Ambrose Univ

Owen P. Hall, Jr
Pepperdine Univ

Jason B. Huett
Univ W Georgia

James Lawler
Pace University

Terri L. Lenox
Westminster Coll

Jens O. Liegle
Georgia State U

Denise R. McGinnis
Mesa State College

Therese D. O’Neil
Indiana Univ PA

Alan R. Peslak
Penn State Univ

Jack P. Russell
Northwestern St U

Jason H. Sharp
Tarleton State U

Charles Woratschek
Robert Morris Univ

EDSIG activities include the publication of ISEDJ, the organization and execution of the annual
ISECON conference held each fall, the publication of the Journal of Information Systems Education
(JISE), and the designation and honoring of an IS Educator of the Year. • The Foundation for
Information Technology Education has been the key sponsor of ISECON over the years. • The
Association for Information Technology Professionals (AITP) provides the corporate umbrella under
which EDSIG operates.

c© Copyright 2006 EDSIG. In the spirit of academic freedom, permission is granted to make and
distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document
is presented, and it is not modified in any substantial way.

c© 2007 EDSIG http://isedj.org/5/20/ June 6, 2007

ISEDJ 5 (20) Naugler and Surendran 3

A Perspective on the Use of Modeling Diagrams

in Computer Science and
Information Systems Curricula

David R. Naugler
dnaugler@semo.edu

Ken Surendran
ksurendran@semo.edu

Southeast Missouri State University
Cape Girardeau, Missouri 63701 USA

ABSTRACT

Modeling diagrams are used in Computer Science and Information Systems courses. Different
tools are used for different paradigms of system development. The authors share their per-
spectives in using different modeling tools in systems analysis and design and database
courses. They discuss paradigm related issues in programming languages. They suggest us-
ing the diagrams from both the paradigms (procedure centric and object oriented) with a view
to enhancing the value of the curricula.

Keywords: Modeling tools, analysis and design, system development paradigms

1. INTRODUCTION

The term tool, as used in this paper, is not
necessarily a software product and may re-
fer to standards as well. Many important
design tools are notations or collections of
concepts that do not necessarily have or
need a software implementation. Such tools
can be considered separately from any im-
plementation. Thus Unified Modeling Lan-
guage (UML), a graphical modeling lan-
guage, is considered to be a modeling tool,
as are design patterns, Entity Relationship
Diagrams (ERDs) and normal forms.

Virtually all software explicitly or implicitly
involves modeling in some form during its
design and construction. At all stages in the
design and construction of software, models
are used, often implicitly, to guide develop-
ment. The whole system development proc-
ess consists of a series of transformations
starting from abstracting the system in the
problem domain and realizing solution in the
computer domain. During this process, sev-
eral intermediary system artifacts are pro-
duced in the analysis and design workflows

using diagramming tools, before program
construction. These intermediary models
normally use standard diagramming lan-
guages for facilitating communication among
the various participants in the development
process.

However, a model is not the same thing as
what it is modeling. Even the standard
(IEEE754) floating point numbers used in
most programming languages to model real
numbers violate simple algebraic rules such
as the commutativity of addition [Goldberg,
1991]. The difference between the model
and the “reality” it abstracts is a factor in all
modeling and in the conclusions that can be
reached from using a system based on a
model. The main problem with using models
is abstracting the essence of what is being
modeled so that solutions in the model cor-
respond to real solutions of the problem.
This applies at all levels of modeling.

Modeling diagrams are used extensively in
the systems analysis and design course and,
to some extent, in the database course.
Once an information system is planned, the

c© 2007 EDSIG http://isedj.org/5/20/ June 6, 2007

ISEDJ 5 (20) Naugler and Surendran 4

actual construction is preceded by analysis
and design during which the intended sys-
tem is abstracted and blueprints for imple-
mentation are prepared. In view of the
complex nature of analysis and design and
its importance in system development, the
IS2002 model curriculum (Gorgone, 2003)
recommends three analysis and design
courses. In the first course analysis and
logical design are considered and in the re-
maining two, physical design and implemen-
tation issues are considered for applications
in different environments. Even though the
database course is not explicitly mentioned,
it is embedded in one of the physical design
courses.

The computing sciences use sophisticated
techniques to model a software project.
Large projects require such models. Smaller
projects may not require such explicit mod-
els but may benefit substantially if such
techniques are used. Modeling can be per-
formed at a variety of levels. A model can
be as simple as a few sketches on paper or
so complicated that many thousands of
pages of carefully written information is re-
quired to express it. Software Engineering
explicitly studies the use of certain modeling
methods for the purpose of designing large
software projects. In Computer Science
(CS) curricula, analysis and design topics are
covered in software engineering courses.
Also, many CS programs include a database
course in their core curricula.

At the authors’ university, the MIS program
has both analysis and design and database
management as core courses and the CS
and CIS (Computer Information Systems)
programs have software engineering and
database as core courses. The authors
teach modeling diagrams in procedure cen-
tric (PC) paradigm in the analysis and design
course and UML diagrams in object oriented
(OO) paradigm in software engineering
courses. In the database courses, modeling
diagrams pertaining to relational databases
are taught. Having experienced the para-
digm changes in these areas over the years,
they observe a few similarities and differ-
ences between the models used in these
paradigms. Based on these observations,
they suggest a few possibilities in using
some of the ideas from the OO paradigm in
PC SA&D. Also, they highlight the difficulties
faced in teaching OO paradigm along with
relational databases in software engineering.

In the next section, they briefly describe the
two major paradigms used in systems analy-
sis and design.

2. ANALYSIS AND DESIGN PARADIGMS

There are currently two major paradigms for
analysis and design which reflect two some-
what distinct ways of solution conceptualiza-
tion. Structured Analysis and Structured
Design (procedure centric paradigm) and/or
Object Oriented Analysis and Design (object
oriented paradigm) are taught in Systems
Analysis and Design (SA&D) courses. Of the
two analysis and design paradigms, the pro-
cedure centric paradigm has been in use for
quite sometime, whereas the object oriented
(OO) paradigm has gained prominence rela-
tively recently (since 1997). A series of in-
novations such as structured design (Your-
don & Constantin, 1979), the relational
model for database (Codd, 1970) and the
entity-relationship model (Chen, 1976) pro-
vided a basis for a formal procedure centric
SA&D course. A large majority of the Infor-
mation Systems programs continue to use a
procedure centric approach in their SA&D
course. However, after the introduction of
UML in 1997 (Booch, et al, 1999) as “the”
standard modeling language for the object
oriented paradigm, more and more instruc-
tors are considering the object oriented
paradigm for their SA&D course. For the
sake of completeness, these two SA&D
paradigms are very briefly summarized in
the following.

2.1 The Procedure Centric Paradigm

Data and processes are considered sepa-
rately in the procedure centric approach.
The first model in a SA&D course taught us-
ing this paradigm is the context diagram.
This is followed by several levels of data flow
diagrams (DFDs). The separation of process
and data and the focus on process is appar-
ent in them. Concurrently, a corresponding
entity relationship diagram is introduced to
deal with the data. The initial logical dia-
grams are then transformed into physical
ones that address architectural concerns. As
part of detailed design, structure charts and
schema are discussed. This brief description
of the procedure centric paradigm considers
a few main diagrams discussed later. User
interface design, test plans, and implemen-
tation issues are also discussed.

c© 2007 EDSIG http://isedj.org/5/20/ June 6, 2007

ISEDJ 5 (20) Naugler and Surendran 5

Research and development in database
technology has flourished relatively inde-
pendently of this paradigm. Most present
day applications use a relational database
management system (RDBMS), although a
few legacy hierarchical and probably also
network databases are still in use. All types
of databases are modeled well in the proce-
dure centric approach since databases are
designed independently of the processes.

2.2 Object Oriented Paradigm

Structured Analysis and Structured Design
helps produce specifications suitable for im-
plementing applications with process (proce-
dure) oriented languages such as COBOL
and encourages procedural programming in
more so-called object-oriented languages
such as C++, and Java. Even though ob-
ject oriented languages have long existed,
matching modeling standards for analysis
and design were finalized only in 1997when
the Object Management Group released Uni-
fied Modeling Language (UML) as the stan-
dard modeling language for expressing the
analysis and design artifacts under OO para-
digm. In a way, the lack of a suitable mod-
eling tool limited the growth of OO applica-
tions. Table-1 summarizes the basic models
under the two paradigms for the three main
primary (system development Life Cycle)
SDLC steps.

The inherent invisibility of software which
makes system development difficult is ad-
dressed by providing five different views of
the system under development: the use
view, logical view, process view, implemen-
tation view and deployment view (Kruchten,
1995). UML diagrams can be used for de-
picting these views.

One approach to using the various UML dia-
grams in an SA&D course is briefly described
here. Analysis and design using OO para-
digm starts with a use case diagram and use
case descriptions. (The use case model in-
cludes, in addition, supplementary quality of

service requirements.) Using the use case
descriptions, three groups of analysis classes
are identified which collectively take on the
responsibilities of providing the required ser-
vices. Interaction (collaboration / sequence)
diagrams for the scenarios of the use cases
help in the above class identification activity.
The non-functional requirements from the
use case model help identify the analysis
mechanisms some of the identified classes
may require. These classes are suitably
packaged paving the way for architectural
design using package diagrams. The
classes’ analysis mechanisms are mapped
into design mechanisms. In particular, the
persistent entity classes (from analysis) be-
come candidates for database consideration.
The boundary classes (from analysis) are
transformed into user interfaces. Required
subsystems and their interfaces are identi-
fied. The possibility of using design patterns
and frameworks are also examined. The
behavior of complex objects is expressed
using statechart diagrams. Finally, all de-
sign class diagrams are prepared.

In such an SA&D course, user interface and
database design are also discussed. Both
OO and PC SA&D courses use more or less
the same contents for user interface design.
However, the discussions on database de-
sign vary. Both the class diagram (which
also contains the entity classes) and the en-
tity relationship diagram (ERD) serve as dia-
grams for database design. The database
courses use ERD as RDBMS are popular (and
of practical value). In SA&D courses, rela-
tional modeling diagrams are still taught for
the database aspects. Even in SA&D
courses that deal with object oriented para-
digm, the emphasis is placed on the rela-
tional modeling with an introduction to the
designs dealing with OODMBS and ORDBMS
(Satzinger, et al, 2004).

2.3 Relational Database

Relational database technology was a highly
significant development in Computer Science

Paradigms Main SDLC
steps

Procedure Centric Models Object Oriented Models
Analysis Context, Data Flow, Entity Rela-

tionship
Unified Modeling Language (Use case,
collaboration, class, package)

Design Structure chart, schema UML (Sequence, statechart, object,
class, subsystem, deployment)

Implementation Procedure centric language OO Languages
Table 1

c© 2007 EDSIG http://isedj.org/5/20/ June 6, 2007

ISEDJ 5 (20) Naugler and Surendran 6

and is now a solid, stable and mature tech-
nology. Commercially available and widely
used RDBMS’s such as Oracle provide a very
high level of dependability, security and
support. Given the very considerable finan-
cial and intellectual investments in RDBMSs
and their remarkable success - almost all
non-toy programs use a commercial RDMS -
users are reluctant to seriously consider al-
ternatives and vendors are reluctant to
make changes that break existing relational
databases or that fail to maintain the current
levels of dependability and security.

2.4 Relational to Object Oriented

The relational model handles objects with no
problem. In fact, the model really does not
define the data types that can be used. The
atomicity requirement called the first normal
form was adopted for practical efficiency and
implementation reasons because of the early
emphasis on model implementations and not
on the model itself and is only artificially
part of the commonly received model (Date,
2001, Fagen 1981). Implementations of the
relation model – relational DBMS’s - have
built in data types and often only built-in
data types.

Major RDBS vendors have moved slowly to
incorporate object orientation into their
products. Indeed, there are some very real
and subtle difficulties and issues in the full
incorporation of object orientation in DBMS
which computer scientists have yet to com-
pletely solve. So-called object-relational
DBMS are a transitional phase incorporating
some object concepts while maintaining the
security and dependability of relational sys-
tems. Intersystems’ Caché database sys-
tem, which uses what the company calls the
postrelational database model, is an estab-
lished commercial product which can rea-
sonably be called object oriented and which
interfaces well with some object oriented
languages in common use (Kirsten et al,
2003).

2.5 Use of Object Oriented Databases

Most developers and users are reluctant to
consider pure Object Oriented DBMSs
(OODBMS). Indeed, many object-oriented
languages and platforms have strong sup-
port for relational databases. Both Java and
the Visual Studio languages (most impor-
tantly C#, and Visual Basic) provide much
support for interacting with relational data-

bases through SQL and even creating and
manipulating relational databases in mem-
ory. As a result most developers on such
platforms think of databases as relational
databases and have developed the knowl-
edge and skill to use them. The Caché da-
tabase system certainly allows interaction
between the database and languages such
as Java and C++ but Oracle and SQL Server
seem to be dominant currently.

Jade, a product from New Zealand, offers a
consistent two-in-one OO development envi-
ronment in that it is an OO language with
OO database (Jade, 2005). Such an inte-
grated product could be used in capstone
courses involving the development of a new
software entirely (analysis, design, imple-
mentation – including database) in the OO
paradigm without having to use any DB con-
nectivity tools.

3. PROGRAMMING LANGUAGES AND

SYSTEM DEVELOPMENT PARADIGMS

The types of programming languages avail-
able for system implementation affect the
selection of system development paradigm.
Availability depends on the existence of ef-
fective compilers or interpreters, language
specific or compatible programming support
tools such as development environments,
the knowledge and skill of the programmers,
and the support of management. Perhaps
the most important consideration is the pro-
gramming paradigms with which the imple-
menters are comfortable.

3.1 Language Paradigms

A programming language is fundamentally a
tool used by programmers to express algo-
rithms. Different languages have different
syntax and may provide the programmer
with different constructs. Different pro-
gramming language paradigms provide dis-
tinct ways to conceptualize algorithms, and
hence distinct ways to think about problems.
An important “bonus” of most programming
languages is that they are implemented so
the algorithms expressed in them can be
“automatically” compiled to produce code
that actually runs. Programmers can easily
continue to think and program procedurally
in any programming language, although this
is more difficult in some than in others.

c© 2007 EDSIG http://isedj.org/5/20/ June 6, 2007

ISEDJ 5 (20) Naugler and Surendran 7

3.2 Object Oriented Languages

Programming languages may be categorized
into paradigms in various ways. Most useful
ways do not lead to disjoint categories. Ob-
ject orientation is way of conceptualization
which leads to many quite different appear-
ing instantiations in programming languages
when added to or used in conjunction with
other paradigms. One of the earliest object
oriented languages was Simula 67 which
was built on top of Algol 60 in much the
same way as C++ is built on C. Algol 60,
the first programming language that was
carefully designed, is the direct or indirect
ancestor of most procedure oriented lan-
guages. Some form of object orientation
has been added to many procedure oriented
languages. The languages most commonly
used for commercial program construction,
such as C++, Java and more recently C#
and VB.NET, are of this type.

Most programming using so-called object
oriented languages is procedural program-
ming, at best using the syntax the language
provides for objects. It is important to re-
member that object-oriented programming
is a programming paradigm which is not
synonymous with using the syntax of
classes/objects in object oriented languages.

In Information Systems we are concerned
with object oriented modeling primarily for
the construction of systems using object ori-
ented tools in what may be considered the
usual languages such as C++ and Java. In
such languages classes are a very heavy
duty construct carrying a great deal of the
load of the design and construction of pro-
grams. Not to be left out of consideration,
modern COBOL versions have classes.
Other, less widely known and used, lan-
guages such as SML and Unicon have power-
ful constructs lacking in C++ and Java. In
these languages classes maybe available but
serve a somewhat minor function since
much of the power of the languages comes
from other constructs. Neither of these lan-
guages needs object orientation for effective
large scale programming. [Note: SML does
not itself have classes – the variant O’CAML
is essentially SML with classes. There are
some subtle issues with adding classes while
maintaining SML’s typing systems]. On the
other hand, the language Smalltalk (Kay,
1993), is often called a pure object oriented
language since virtually everything, includ-

ing control constructs and literals are ob-
jects.

It can be observed from the above discus-
sions that concepts from new paradigms
were incorporated in older procedure-centric
languages to enrich them. In the same vein
the useful concepts in OO analysis and de-
sign could be used to enrich the PC SA&D.
These suggestions are indicated in the next
section.

4. OBSERVATIONS AND SUGGESTIONS

The Unified Modeling Language (UML) has
become a very important modeling tool for
software projects. It is the confluence of
several major approaches to object oriented
analysis and design (OOAD) models in soft-
ware engineering. Procedure centric model-
ing tools predate UML and could benefit by
using OOAD heuristics.

Use cases are not limited to the OO para-
digm and can enhance learning in a course
using the PC paradigm. They can be used to
verify analysis and design artifacts ensuring
they are in sync with earlier requirements.
This is not achieved with context diagrams.
Use case diagrams also provide context in-
formation and serve some of the functions of
level-0 DFD minus the data-stores. This
needs to be further examined. Some text-
books (Dennis & Wixom, 2003) introduce
use cases just before process modeling.

Use case descriptions are helpful in user in-
terface design.

Activity diagrams, like use cases, need not
be restricted to OO. Capturing business
processes usually precedes requirements
analysis.

During use case analysis entity classes are
identified and their analysis mechanisms are
defined. Analysis classes with persistence
mechanisms are candidates for ERD. Heu-
ristics used for identifying entity classes can
also be used. Collaboration diagrams drawn
from use case scenarios can provide consid-
erable insight for the preparation of ER dia-
grams, particularly in finding the related en-
tities and relationship types.

Teaching OO SA&D is easier when students
have a considerable background in object
oriented programming. However, nearly all
students find it difficult when a relational
database is chosen for handling persistent

c© 2007 EDSIG http://isedj.org/5/20/ June 6, 2007

ISEDJ 5 (20) Naugler and Surendran 8

classes. This requires additional redesign
from OODBMS to RDBMS. Class diagrams
are much more complex than ERDs since
they abstract complex relationships not
found in ERDs. Class diagrams are suitable
for OODBMS which are not yet in common
use. In some higher level database courses
mappings between object and relational da-
tabase designs are considered (Dietrich &
Durban, 2005).

The perspectives presented in this paper are
from the academic trenches. It would be
interesting to know the trends in the indus-
try concerning the paradigm uses and para-
digm mixes.

5. REFERENCES

Booch G., J. Rumbaugh, I. Jacobson (1999).
The Unified Modeling Language User
Guide, Addison Wesley, 1999

Date, C.J. (2001), The Relational Model: A
Retrospective Review and Analysis, Addi-
son Wesley, 2001

Dennis, A. and B. H. Wixom, (2003), Sys-
tems Analysis and Design, 2nd edition,
John Wiley & Sons

Dietrich S. W. and S. Urban (2005). An Ad-
vanced Course in Database Systems: Be-
yond Relational Databases, Pearson Pren-
tice Hall.

Fowler, Martin (1997), UML Distilled: Apply-
ing the Standard Object Modeling Lan-
guage, Addison Wesley, 1997

Goldberg, David (1991), “What every com-
puter scientist should know about floating-
point arithmetic”, ACM Computing Sur-
veys, Volume 23 Issue 1 March 1991

Haugland, S., M. Cade and A. Orapallo
(2004) J2EE 1.4 The Big Picture, Prentice
Hall

Jade, (2005) Retrieved Sep 21, 2005 from.
http://www.jadeworld.com/education
/jadetep.htm

Kay A. (1993). “The Early History of Small-
talk”, ACM SIGPLAN Notices, Volume 28,
No. 3, 1993, pp 2-54

Kirsten W, M. Ihringer, M. Kühn and B.
Rohrig (2003) Object-Oriented Application
Development Using the Caché Postrela-
tional Database, 2nd Edition, Springer Ver-
lag

Kruchten, P., (1995). “The 4+1 View Model
of Architecture,” IEEE Software 12(6).

Satzinger, J. W., Jackson, R. B., Burd, S. D.,
(2004). Systems Analysis and Design in a
Changing World, 3rd Edition, Thomson
Currier technology.

c© 2007 EDSIG http://isedj.org/5/20/ June 6, 2007

