
Volume 5, Number 3 http://isedj.org/5/3/ January 3, 2007

In this issue:

Modern Data Structures: Experiences with a Flexible Approach to a
Data Structures Course

Richard M. Stillman Alan R. Peslak
Nova Southeastern University Penn State University

Fort Lauderdale, FL 33314 USA Dunmore, PA 18512 USA

Abstract: Data structures retain a major place in the 2002 IS (Information Systems) Model Cur-
riculum, but debate about teaching abstract data structures to computer and information systems
students continues. The discussion generally centers on the relative merits of teaching how to pro-
gram data structures versus how to use them. We propose a compromise approach in which students
are introduced to both aspects. The capstone of the course is a final project where students are
given the latitude to focus on developing and/or applying abstract data structures. Grades are
based upon creativity and complexity. This approach allows each student to shape the educational
experience to his or her own talents and professional needs. Experience with a group of 38 students
of diverse backgrounds is presented. The validity and value of this final project are supported by the
following trends that emerged from analyzing this experience. Students’ grades on the final project
correlated with their grades on other traditional assignments. Interestingly, those students in the
upper one-third of the class tended to select the more difficult data structures to implement in their
final project. Also, the 19 students with professional experience beyond entry-level employment were
more likely to submit creative, rather than routine, final projects. The approach presented is seen
as a success, ensuring that all students comprehend the basics of data structures, yet encouraging
the more devoted students to excel.

Keywords: data structures, higher education, capstone, final project, information systems, active
learning environment

Recommended Citation: Stillman and Peslak (2007). Modern Data Structures: Experiences
with a Flexible Approach to a Data Structures Course. Information Systems Education Journal, 5
(3). http://isedj.org/5/3/. ISSN: 1545-679X. (Also appears in The Proceedings of ISECON 2006:
§2524. ISSN: 1542-7382.)

This issue is on the Internet at http://isedj.org/5/3/

ISEDJ 5 (3) Information Systems Education Journal 2

The Information Systems Education Journal (ISEDJ) is a peer-reviewed academic journal
published by the Education Special Interest Group (EDSIG) of the Association of Information
Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1545-679X. • First issue: 8 Sep 2003.
• Title: Information Systems Education Journal. Variants: IS Education Journal; ISEDJ. • Phys-
ical format: online. • Publishing frequency: irregular; as each article is approved, it is published
immediately and constitutes a complete separate issue of the current volume. • Single issue price:
free. • Subscription address: subscribe@isedj.org. • Subscription price: free. • Electronic access:
http://isedj.org/ • Contact person: Don Colton (editor@isedj.org)

2006 AITP Education Special Interest Group Board of Directors

Stuart A. Varden
Pace University

EDSIG President 2004

Paul M. Leidig
Grand Valley State University
EDSIG President 2005-2006

Don Colton
Brigham Young Univ Hawaii

Vice President 2005-2006

Wendy Ceccucci
Quinnipiac Univ
Director 2006-07

Ronald I. Frank
Pace University

Secretary 2005-06

Kenneth A. Grant
Ryerson University
Director 2005-06

Albert L. Harris
Appalachian St

JISE Editor

Thomas N. Janicki
Univ NC Wilmington

Director 2006-07

Jens O. Liegle
Georgia State Univ
Member Svcs 2006

Patricia Sendall
Merrimack College

Director 2006

Marcos Sivitanides
Texas St San Marcos
Chair ISECON 2006

Robert B. Sweeney
U South Alabama
Treasurer 2004-06

Gary Ury
NW Missouri St
Director 2006-07

Information Systems Education Journal 2005-2006 Editorial and Review Board

Don Colton
Brigham Young Univ Hawaii

Editor

Thomas N. Janicki
Univ of North Carolina Wilmington

Associate Editor

This paper is part of the group that was selected for inclusion in the journal based on preliminary
ratings in the top 30% of papers submitted, and a second review placing it in the top 15% by persons
unconnected with the conference or the journal, and whose names are withheld to preserve their
anonymity.

EDSIG activities include the publication of ISEDJ, the organization and execution of the annual
ISECON conference held each fall, the publication of the Journal of Information Systems Education
(JISE), and the designation and honoring of an IS Educator of the Year. • The Foundation for
Information Technology Education has been the key sponsor of ISECON over the years. • The
Association for Information Technology Professionals (AITP) provides the corporate umbrella under
which EDSIG operates.

c© Copyright 2007 EDSIG. In the spirit of academic freedom, permission is granted to make and
distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document
is presented, and it is not modified in any substantial way.

c© 2007 EDSIG http://isedj.org/5/3/ January 3, 2007

ISEDJ 5 (3) Stillman and Peslak 3

Modern Data Structures:

Experiences with a Flexible Approach

to a Data Structures Course

Richard M. Stillman
rstillma@nova.edu

School of Computer and Information Sciences
Nova Southeastern University

Fort Lauderdale, Florida 33314, USA

Alan R. Peslak
arp14@psu.edu

Information Sciences and Technology

Penn State University

Dunmore, Pennsylvania 18512, USA

ABSTRACT

Data structures retain a major place in the 2002 IS (Information Systems) Model Curriculum,

but debate about teaching abstract data structures to computer and information systems stu-

dents continues. The discussion generally centers on the relative merits of teaching how to

program data structures versus how to use them. We propose a compromise approach in

which students are introduced to both aspects. The capstone of the course is a final project

where students are given the latitude to focus on developing and/or applying abstract data

structures. Grades are based upon creativity and complexity. This approach allows each stu-

dent to shape the educational experience to his or her own talents and professional needs.

Experience with a group of 38 students of diverse backgrounds is presented. The validity and

value of this final project are supported by the following trends that emerged from analyzing

this experience. Students’ grades on the final project correlated with their grades on other

traditional assignments. Interestingly, those students in the upper one-third of the class

tended to select the more difficult data structures to implement in their final project. Also, the

19 students with professional experience beyond entry-level employment were more likely to

submit creative, rather than routine, final projects. The approach presented is seen as a suc-

cess, ensuring that all students comprehend the basics of data structures, yet encouraging the

more devoted students to excel.

Keywords: data structures, higher education, capstone, final project, information systems,

active learning environment

1. INTRODUCTION

The understanding of basic data structures

still plays a central role in information sys-

tems curricula. In the 2002 model curricu-

lum, IS (Information Systems) 2002.5

(Data, File and Object Structures) is a speci-

fied course for both IS majors and minors.

The course description (Gorgone et al, 2002)

includes (emphasis added):

“IS 2002.5. Programming, Data, File and

Object Structures (Prerequisite: IS

2002.1)

Catalog: This course presents object ori-

ented and procedural software engineering

methodologies in data definition and

measurement, abstract data type construc-

tion and use in developing screen editors,

c© 2007 EDSIG http://isedj.org/5/3/ January 3, 2007

ISEDJ 5 (3) Stillman and Peslak 4

reports and other IS applications using

data structures including indexed files.

Scope: This course provides an exposure

to algorithm development, programming,

computer concepts, and the design and

application of data and file structures. It

includes the use of logical and physical

structures for both programs and data.

Topics: Data structures and representa-

tion: characters, records, and files; preci-

sion of data; information representation,

organization, and storage; algorithm de-

velopment; programming control struc-

tures; program correctness, verification,

and validation; file structures and repre-

sentation. Programming in traditional and

visual development environments that in-

corporate event-driven, object-oriented

design.

Discussion: Specific data structures in-

cluding arrays, records, stacks, queues,

and trees will be created and used. The

course will provide an introduction to the

use of predefined user interface compo-

nents.”

Data structures thus remain an important

component of an IS curriculum. But there is

some debate on how to teach data struc-

tures to undergraduate and beginning

graduate students. Much has been written

about the role of teaching abstract data

structures in the curricula of computer sci-

ence and information systems. The impor-

tance of introducing students to abstract

data structures early in CS education has

been discussed for several decades (Lang

and Maruyama, 1989; Friedman and Koff-

man, 1976; Tremblay & Manohar, 1974).

Clearly, today's practitioners need to under-

stand how to use abstract data structures,

yet there is some question as to how deeply

an undergraduate or early graduate-level CS

or CIS course should delve into the imple-

mentation details. A description of an early

data structures course that stressed imple-

mentation (Feldman, 1984) reported that

many students actually used their data

structure projects in their employment. To-

day, this is less likely. Modern object-

oriented languages such as Java, C++ and

C# come packaged with libraries of well-

documented data structures which can be

easily used without ever viewing the under-

lying code. The object oriented paradigm

stresses modularity and code re-use. If we

have students in essence re-write Java's col-

lections classes from scratch, we may be

continuing to create information technolo-

gists who are most comfortable rebuilding

code that is already in place. Raymond Lister

(Collins et al, 2003) suggests, "Software

Engineering is moving away from emphasis

on the creation of code, toward emphasis on

components and code reuse. The teaching of

data structures needs to adjust to that

change." On the other hand, by building

code from the ground up, students can gain

a better appreciation of the packaged data

structures they are using.

Conferring an understanding of what's under

the hood of abstract data structures does

have several advantages. A data structures

course typically is the first course to follow

the student's first object-oriented program-

ming course. If nothing else, coding data

structures helps sharpen a beginner's pro-

gramming skills. But beyond this, building

data structures illuminates one of the layers

of opacity that separate the new program-

mer from the machine. The student who

has coded even a simple abstract data struc-

ture develops an appreciation for the diffi-

culty of making abstract code function relia-

bly, the significance of edge cases, and the

beauty of encapsulation and polymorphism.

Lister et al (2004) point out that "data struc-

tures are a vehicle for developing thinking

skills that are important and transferable

beyond their immediate application to data

structures… [and build an] awareness that

the obvious or straightforward way to do

things is often markedly inferior to clever

ways that have been discovered…"

2. METHODS

The core master’s-level data structures

course at our major southeastern University

lies at the root of a common pathway to

graduate training in computer and informa-

tion sciences. Students entering this course

are assumed to have at least basic Java pro-

gramming skills, and students completing

this course advance into classes in software

engineering, object oriented applications,

and client-server computing. Many of our

students are professionals seeking to ad-

vance their knowledge and careers, and thus

enrollees in the data structures course vary

widely in their background knowledge and

goals for their graduate education. Werth

c© 2007 EDSIG http://isedj.org/5/3/ January 3, 2007

ISEDJ 5 (3) Stillman and Peslak 5

(1986) found that students' prior work ex-

perience demonstrated some correlation

with performance in computer courses, and

suggested that this may be due to motiva-

tion.

Our data structures course includes a major

programming assignment that attempts to

accommodate this diversity. This practical

application approach is a compromise be-

tween those educators who feel that stu-

dents should be taught only how to use data

structures and those educators who would

have their students create data structures.

The project requires the student to select

any five abstract data structures, program

them, and then program applications that

use them. The exact nature of each applica-

tion is entirely at the discretion of the stu-

dent, as is the level and nature of the im-

plementation of the data structure. Stu-

dents are graded based upon the complexity

and originality of their submissions.

This approach enables each student to mold

the educational experience to his or her own

skill set, and perhaps even more signifi-

cantly, to his or her professional needs. For

example, those students whose career plan

will focus on developing systems from com-

ponents can hone these skills by building

applications. Those students who prefer to

develop components would spend more time

creating the data structures. And each of

these students will do at least a little of both

types of design during this course.

This final project is the capstone of the

course, but the educational experience also

includes five programming assignments

taken from a standard data structures text-

book, and two descriptive essay questions.

In addition, a large portion of the course is

traditional data structures text material and

specific short answer assignments that ex-

plore students’ knowledge of data structures

concepts. As a result, it has been possible to

compare students' grades on the traditional

assignments with the grades achieved on

the final project.

3. RESULTS

Based upon 38 submissions reviewed by the

instructor, we have discerned clear qualita-

tive differences among the students' ap-

proaches to this project.

Project Categories

Naturally, there was some variability within

each submission, but in general, most sub-

missions appeared to fit nicely into one of

two categories:

Basic: These submissions included

mostly data structures that rehashed the

design of those provided by the instructor

during the didactic portion of the course,

especially those given in the textbook. The

applications were rudimentary uses of the

data structures.

Creative: Submissions in this group

emphasized creative design of the ADTs, as,

for example, building a class hierarchy, or

using a sort algorithm different from the

ones presented during the course. Some of

these submissions effectively dropped as-

sumptions about the data types that had

been presented during the didactic portion of

the course. These submissions therefore

offered additional flexibility. For example,

some of these ADTs permitted duplicate or

null objects, intelligently handled exceptions

rather than just throwing them back to the

client, or allowed arbitrary object ordering

methods. (We shall not discuss here the

real-world problems with such relaxed con-

straints.) See the Appendix of this paper for

excellent examples of what we considered

creative applications.

Correlate of ADT Choice

Figure 1 shows the relationships between

the students' specific choice of abstract data

types for the final project and their overall

standing in the class. The fractions add to

more than 1 because each student submit-

ted five ADTs.

Those students who were in the upper 1/3 of

the class were more likely than the remain-

der of the class to have selected priority

queues and recursive binary search imple-

mentations, which are the more abstract and

difficult ADTs. (The numbers in each row

were too small to infer any other significant

differences.) The project flexibility allowed

the better students to select the more chal-

lenging ADTs.

Correlates of Performance

In addition to reviewing their grades in the

two components of the data structures

course, we also explored the students’ ex-

c© 2007 EDSIG http://isedj.org/5/3/ January 3, 2007

ISEDJ 5 (3) Stillman and Peslak 6

perience levels. When we classify the quality

of the students’ submissions and consider

the students employment backgrounds, in-

teresting trends emerge.

Table 1 relates the project and assignment

grades to the nature of the project and the

student’s professional background.

Project Category Versus Grade: The

average grade on the 16 projects considered

creative was 96.6 ± 4.7 compared to an av-

erage grade of 84.9 ± 16.1 on the 22 pro-

jects considered basic. Therefore, not unex-

pectedly, creative projects earned signifi-

cantly higher grades (P = 0.003 by Student’s

t-test).

Project Category Versus Perform-

ance on Other Assignments: Of more

interest, those students who submitted crea-

tive projects achieved significantly higher

grades on the other assignments as well

(93.7 ± 4.5 versus 87.4 ± 7.3 with P =

0.002).

Grades Versus Professional Experi-

ence: Half of the students had professional

experience beyond entry-level employment.

The experienced professionals performed

marginally better in the assignments (91.7

versus 88.3), but significantly better on the

final project (92.7 versus 87.0). Experience

correlated significantly with the student’s

decision to implement (self-select) creative

projects. But experience alone was not re-

quired for achieving higher grades. Students

with little experience who exerted the effort

to develop creative projects did similarly well

in both project and course grades. We sug-

gest that there is most likely a higher learn-

ing curve for those with less experience, but

with self-motivation this learning curve was

overcome. Those with less experience who

did not make this effort excelled neither in

the project nor in the other assignments.

4. DISCUSSION

In the varied environments of today's object

oriented languages, programmers have to

learn to recognize and adjust to subtle dif-

ferences among data structure implementa-

tions (Fekete, 2002). Each textbook tends

to focus on one particular implementation.

Our capstone project allows the student to

work out the subtleties of at least one other

implementation.

Jarc (1994) recognized that students are

often taught abstract data structures indi-

vidually and in isolation. He suggested a

more unified approach. Goldweber et al

(1997) looked at the computer science cur-

riculum from several different vantage points

and, among other recommendations, em-

phasized the importance of pedagogic inno-

vations that help students develop mature

problem-solving strategies. Haddad (2002)

found that newly hired, recent CS graduates,

despite good theoretical knowledge, often

lacked the ability to apply the principles in

practice. Maurer (2002) pointed out that at

the conclusion of a data structures course,

students might have acquired nothing more

than a set of disjoint bits of information

about abstract structures without a clue

about how all of it fits together. Solving real

world problems and participating in hands-

on exercises improve computer science stu-

dents' reasoning skills (Parham, 2003). CS

students require an active learning environ-

ment (Briggs, 2005). Budd (2006) talked of

the benefits of active learning in a data

structures course.

We present a practical and flexible approach

to a final project for a basic data structures

course (a required course in the 2002 Model

Curriculum). Students are given wide lati-

tude to develop and to apply abstract data

structures. Grades are based upon creativity

and complexity. This approach allows each

student to shape the educational experience

to his or her own talents and expectations.

It also provides a valid yardstick for grading.

It could be suggested that the project

grades only reflect the bias of the instructor,

but grades on the final project correlated

strongly with grades on the other assign-

ments (p < .001). These assignments were

purely objective, thus validating the knowl-

edge transfer which has taken place during

the semester and the allowing of students to

create not only working data structures but

practical applications as well. Students in

the upper one-third of the class were more

likely to select the more abstract and diffi-

cult ADTs to implement for the final project.

Interestingly, those students with employ-

ment experience beyond entry-level jobs

were more likely to submit creative final pro-

jects. We believe that the combination of

traditional data structures course materials

combined with a flexible capstone project

c© 2007 EDSIG http://isedj.org/5/3/ January 3, 2007

ISEDJ 5 (3) Stillman and Peslak 7

allows for a better more comprehensive ap-

proach to teaching data structures.

Our approach compels the student to select

data structures and apply them. Addressing

Jarc (1994), our data structures are not

taught in isolation. We believe we have

adapted a problem-solving approach as sug-

gested by Goldweber et al. (1997) and Par-

ham (2003). We allow for applying principles

in action (Haddad, 2002). Finally, we ad-

dress Maurer's (2002) perceived need for a

capstone, and Budd (2006) and Briggs

(2005) active learning models. Data struc-

tures remains a vital component of IS edu-

cation. Our approach is suggested to allow

for a modern, flexible approach to meet the

needs to the current professional environ-

ment.

5. REFERENCES

Bogoiavlenski, I. A., Clear, A. G., Davies, G.,

Flack, H., Myers, J. P., and Rasala, R.

1997. “Historical perspectives on the com-

puting curriculum.” SIGCUE Outlook 25, 4

(Oct. 1997), 94-111.

Briggs, T. 2005. “Techniques for active

learning in CS courses.” J. Comput. Small

Coll. 21, 2 (Dec. 2005), 156-165.

Budd, T. A. 2006. “An active learning ap-

proach to teaching the data structures

course.” In Proceedings of the 37th SIG-

CSE Technical Symposium on Computer

Science Education (Houston, Texas, USA,

March 03 - 05, 2006). SIGCSE '06. ACM

Press, New York, NY, 143-147.

Collins, W., Tenenberg, J., Lister, R., and

Westbrook, S. 2003. “The role for frame-

work libraries in CS2.” In Proceedings of

the 34th SIGCSE Technical Symposium on

Computer Science Education (Reno,

Navada, USA, February 19 - 23, 2003).

SIGCSE '03. ACM Press, New York, NY,

403-404.

Fekete, A. 2002. “Teaching data structures

with multiple collection class libraries.” In

Proceedings of the 33rd SIGCSE Technical

Symposium on Computer Science Educa-

tion (Cincinnati, Kentucky, February 27 -

March 03, 2002). SIGCSE '02. ACM Press,

New York, NY, 396-400.

Feldman, M. B. 1984. “Abstract types, ADA

packages, and the teaching of data struc-

tures.” In Proceedings of the Fifteenth

SIGCSE Technical Symposium on Com-

puter Science Education L. N. Cassel and J.

C. Little, Eds. SIGSCE '84. ACM Press, New

York, NY, 183-189.

Friedman, F. L. and Koffman, E. B. 1976.

“Some pedagogic considerations in teach-

ing elementary programming using struc-

tured FORTRAN.” In Proceedings of the

ACM SIGCSE-SIGCUE Technical Sympo-

sium on Computer Science and Education

(February 01 - 01, 1976). R. Colman and

P. Lorton, Eds. ACM Press, New York, NY,

1-10.

Gorgone, J., Davis, G., Valacich, J., Topi, H.,

Feinstein, D., and Longenecker, H. (2002).

“IS 2002 Model Curriculum and Guidelines

for Undergraduate Degree Programs in In-

formation Systems.” Accessed 5-25-2006.

http://www.aisnet.org/Curriculum/IS2002-

12-31.doc

Haddad, H. 2002. “Post-graduate assess-

ment of CS students: experience and posi-

tion paper.” J. Comput. Small Coll. 18, 2

(Dec. 2002), 189-197.

Jarc, D. J. 1994. “Data structures: a unified

view.” SIGCSE Bull. 26, 2 (Jun. 1994), 2-

4.

Lang, J. E. and Maruyama, R. K. 1989.

“Teaching the abstract data type in CS2.”

In Proceedings of the Twentieth SIGCSE

Technical Symposium on Computer Sci-

ence Education (Louisville, Kentucky,

United States, February 23 - 24, 1989). R.

A. Barrett and M. J. Mansfield, Eds. SIG-

CSE '89. ACM Press, New York, NY, 71-73.

Lister, R., Box, I., Morrison, B., Tenenberg,

J., and Westbrook, D. S. 2004. “The di-

mensions of variation in the teaching of

data structures.” In Proceedings of the 9th

Annual SIGCSE Conference on innovation

and Technology in Computer Science Edu-

cation (Leeds, United Kingdom, June 28 -

30, 2004). ITiCSE '04. ACM Press, New

York, NY, 92-96.

Maurer, W. D. 2002. “A capstone unit for a

data structures class.” J. Comput. Small

Coll. 17, 5 (Apr. 2002), 104-109.

Parham, J. R. 2003. “An assessment and

evaluation of computer science education.”

J. Comput. Small Coll. 19, 2 (Dec. 2003),

115-127.

c© 2007 EDSIG http://isedj.org/5/3/ January 3, 2007

ISEDJ 5 (3) Stillman and Peslak 8

Tremblay, J. P. and Manohar, R. 1974. “A

first course in discrete structures with ap-

plications to computer science.” In Pro-

ceedings of the Fourth SIGCSE Technical

Symposium on Computer Science Educa-

tion SIGCSE '74. ACM Press, New York,

NY, 155-160.

Werth, L. H. 1986. “Predicting student per-

formance in a beginning computer science

class.” In Proceedings of the Seventeenth

SIGCSE Technical Symposium on Com-

puter Science Education (Cincinnati, Ohio,

United States, February 06 - 07, 1986). J.

C. Little and L. N. Cassel, Eds. SIGCSE '86.

ACM Press, New York, NY, 138-143.

c© 2007 EDSIG http://isedj.org/5/3/ January 3, 2007

ISEDJ 5 (3) Stillman and Peslak 9

Table 1. Relationship Among Students' Professional Ex-

perience, Fundamental Approach to the Final Programming

Project, and Performance in the Course.

Grades
Employ-

ment

back-

ground

Approach

to final

project N
Final Pro-

ject

Assign-

ments

Basic 16 85.5 86.8

Creative 3 95.0 96.3

Entry-level

Total 19 87.0 88.3

Basic 6 83.3 88.9

Creative 13 97.0 93.1

Experi-

enced

Total 19 92.7 91.7

0 0.2 0.4 0.6 0.8 1

Unsorted List

Sorted List

Stack

Priority Queue

Heap

Linked List

Binary Search Tree

Circular Linked List

Linked Array

Recursive Binary Search

A
D
T
 s
e
le
c
te
d

Fraction of students

Lower 2/3 of class Upper 1/3 of class

Figure 1. Relationship Between Students' Choices of Abstract Data

Type (ADT) for the Final Project and Class Rank Based Solely Upon

Performance on the Other Assignments

Table and Figure

c© 2007 EDSIG http://isedj.org/5/3/ January 3, 2007

ISEDJ 5 (3) Stillman and Peslak 10

Appendix

Here are two examples of what we classified as “creative” submissions for the final project.

Image Renderer

This Swing application graphically compares a variety of priority queue implementations. It

displays a window consisting of several graphical components. Each graphical component is a

dynamic display of an image as it is rendered pixel by pixel. Each Pixel object knows its color

and position within the image. All 10,000 Pixel objects constituting each 100 x 100 image are

shuffled randomly (using a static method in our List class) and stored in a Priority Queue data

structure. They are then dequeued in order of their priorities and inserted into the developing

image. In this application, pixels sequence in order of their rgb color, highest first. Because

white is represented as 0ffffffh, it has highest priority and therefore white pixels render first,

then red (0ff0000h), green (000ff00h), and finally blue (00000ffh). Intermediate colors (e.g.,

purple, 0ff00ffh) render in priority of their natural ordering. Each copy of the image is handled

by a different priority queue implementation and all of these are processed in parallel, each by

a different Thread running concurrently so that we can visually compare the performance of

these data structures.

Figure 2 is a screen shot of ImageRenderer.java in action. Notice how sluggishly the Circular-

LinkedQueue behaves compared to the others – it is still processing the image as this screen is

captured. Also, notice that our original implementations compare favorably to those of Sun’s

ArrayList class. The balanced AVL tree seems to be the most efficient. (The picture is an

Escher.)

Figure 2. ImageRenderer, an application that graphically compares the performance

of several implementations of a priority queue data structure.

c© 2007 EDSIG http://isedj.org/5/3/ January 3, 2007

ISEDJ 5 (3) Stillman and Peslak 11

Protein Taxonomy

This submission demonstrates an application of a binary search tree using a bioinformatics

backdrop. The student explains the underlying biology:

The evolutionary similarities among organisms can be estimated by looking at the structure

of their proteins. Here’s how. If we look at a protein common to a number of organisms,

we note similar but not identical amino acid sequences. For example, the amino acid se-

quence G A L V (glycine – alanine – leucine – valine) looks similar to G A I V (glycine –

alanine – isoleucine – valine) but quite different from V L A S (valine – leucine – alanine –

serine). The question is how to quantify the similarities and differences. One answer is to

determine how much editing we have to do to convert one sequence into the other. For ex-

ample, by inserting a gap into each of the first two sequences, they align as follows:

G A L – V

| | | | |

G A – I V

We might say that these two sequences have an “edit distance” of two.

He then goes on to describe the application:

ProteinTaxonomy.java starts by reading an input file consisting of a list of proteins. It

parses each record in the file into a Protein object. The Protein object has a name (such as

“Human” or “Gorilla”) and an amino acid sequence (here averaging about 150 amino acids.)

It calculates a score for each protein based upon the edit distance from an index protein

(the one at the top of the list). These Protein objects are then inserted into a Binary-

SearchTree using a Comparator based upon edit distances.

Figure 3 shows the result of running ProteinTaxonomy on a file having the structure of the beta-

globin protein (the amino acid sequences came from the protein database Entrez at

http://www.ncbi.nlm.nih.gov/Database/index.html) from each of a number of organisms. The

resultant hierarchy of life forms – arranged only by analyzing the structure of this one protein –

seems remarkably parallel to our intuition.

c© 2007 EDSIG http://isedj.org/5/3/ January 3, 2007

ISEDJ 5 (3) Stillman and Peslak 12

Figure 3. Protein taxonomy, an application that shows how effective an abstraction an object

comparator can be.

c© 2007 EDSIG http://isedj.org/5/3/ January 3, 2007

