
Volume 7, Number 40 http://isedj.org/7/40/ May 21, 2009

In this issue:

Teaching Software Engineering Including Integration with Other
Disciplines

Richard M. Stillman Alan R. Peslak
Nova Southeastern University Penn State University

Fort Lauderdale, FL 33314 USA Dunmore, PA 18512 USA

Abstract: Software engineering is Money Magazine’s top rated profession. The development of
novel information systems has created new industries and catapulted developers to wealth and
stardom. Yet, for many students of computer and information systems, software engineering is
just another hurdle they must jump to satisfy degree requirements. How best to teach software
engineering so that students appreciate its unique and vital lessons remains an unanswered question.
Our software engineering course exploits students’ experience in specific domains as a foundation for
learning the skills of software development. The course syllabus provides a vehicle for honing one’s
development skills, practicing abstraction, and finally experiencing the “aha” phenomenon when the
student has successfully integrated two different fields of knowledge into a new discipline. We report
the results of this approach.

Keywords: Higher education, software engineering, information systems, active learning environ-
ment, domain knowledge

Recommended Citation: Stillman and Peslak (2009). Teaching Software Engineering Including
Integration with Other Disciplines. Information Systems Education Journal, 7 (40).
http://isedj.org/7/40/. ISSN: 1545-679X. (A preliminary version appears in The Proceedings of
ISECON 2007: §2744. ISSN: 1542-7382.)

This issue is on the Internet at http://isedj.org/7/40/

ISEDJ 7 (40) Information Systems Education Journal 2

The Information Systems Education Journal (ISEDJ) is a peer-reviewed academic journal
published by the Education Special Interest Group (EDSIG) of the Association of Information
Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1545-679X. • First issue: 8 Sep 2003.
• Title: Information Systems Education Journal. Variants: IS Education Journal; ISEDJ. • Phys-
ical format: online. • Publishing frequency: irregular; as each article is approved, it is published
immediately and constitutes a complete separate issue of the current volume. • Single issue price:
free. • Subscription address: subscribe@isedj.org. • Subscription price: free. • Electronic access:
http://isedj.org/ • Contact person: Don Colton (editor@isedj.org)

2009 AITP Education Special Interest Group Board of Directors

Don Colton
Brigham Young Univ Hawaii
EDSIG President 2007-2008

Thomas N. Janicki
Univ NC Wilmington
EDSIG President 2009

Kenneth A. Grant
Ryerson University
Vice President 2009

Kathleen M. Kelm
Edgewood College

Treasurer 2009

Wendy Ceccucci
Quinnipiac Univ
Secretary 2009

Alan R. Peslak
Penn State

Membership 2009
CONISAR Chair 2009

Steve Reames
Angelo State Univ
Director 2008-2009

Michael A. Smith
High Point

Director 2009

George S. Nezlek
Grand Valley State
Director 2009-2010

Patricia Sendall
Merrimack College
Director 2009-2010

Li-Jen Shannon
Sam Houston State
Director 2009-2010

Albert L. Harris
Appalachian St

JISE Editor

Paul M. Leidig
Grand Valley State University

ISECON Chair 2009

Information Systems Education Journal Editors

Don Colton
Brigham Young University Hawaii

Editor

Thomas N. Janicki
Univ of North Carolina Wilmington

Associate Editor

Information Systems Education Journal 2007-2008 Editorial Review Board

Sharen Bakke, Cleveland St
Alan T. Burns, DePaul Univ
Wendy Ceccucci, Quinnipiac U
Janet Helwig, Dominican Univ
Scott Hunsinger, Appalachian
Kamal Kakish, Lawrence Tech
Sam Lee, Texas State Univ
Paul Leidig, Grand Valley St
Terri L. Lenox, Westminster

Anene L. Nnolim, Lawrence Tech
Alan R. Peslak, Penn State

Doncho Petkov, E Connecticut
James Pomykalski, Susquehanna

Steve Reames, Angelo State
Samuel Sambasivam, Azusa Pac
Bruce M. Saulnier, Quinnipiac
Patricia Sendall, Merrimack C

Li-Jen Shannon, Sam Houston St
Michael A. Smith, High Point U
Robert Sweeney, South Alabama

Stuart A. Varden, Pace Univ
Judith Vogel, Richard Stockton

Bruce A. White, Quinnipiac Univ
Belle S. Woodward, S Illinois U

Charles Woratschek, Robert Morris
Peter Y. Wu, Robert Morris Univ

EDSIG activities include the publication of ISEDJ and JISAR, the organization and execution of
the annual ISECON and CONISAR conferences held each fall, the publication of the Journal of
Information Systems Education (JISE), and the designation and honoring of an IS Educator of the
Year. • The Foundation for Information Technology Education has been the key sponsor of ISECON
over the years. • The Association for Information Technology Professionals (AITP) provides the
corporate umbrella under which EDSIG operates.

c© Copyright 2009 EDSIG. In the spirit of academic freedom, permission is granted to make and
distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document
is presented, and it is not modified in any substantial way.

c© 2009 EDSIG http://isedj.org/7/40/ May 21, 2009

ISEDJ 7 (40) Stillman and Peslak 3

Teaching Software Engineering
Including Integration with Other Disciplines

Richard M. Stillman
rstillma@nova.edu

School of Computer and Information Sciences
Nova Southeastern University

Fort Lauderdale, FL 33314, USA

Alan R. Peslak

arp14@psu.edu
Information Sciences and Technology

Penn State University
Dunmore, PA 18512, USA

Abstract

Software engineering is Money Magazine’s top rated profession. The development of novel

information systems has created new industries and catapulted developers to wealth and star-
dom. Yet, for many students of computer and information a system, software engineering is
just another hurdle they must jump to satisfy degree requirements. How best to teach soft-
ware engineering so that students appreciate its unique and vital lessons remains an unans-
wered question. Our software engineering course exploits students’ experience in specific
domains as a foundation for learning the skills of software development. The course syllabus

provides a vehicle for honing one’s development skills, practicing abstraction, and finally expe-
riencing the “aha” phenomenon when the student has successfully integrated two different
fields of knowledge into a new discipline. We report the results of this approach.

Keywords: higher education, software engineering, information systems, active learning envi-
ronment, domain knowledge

1. INTRODUCTION

No one would have predicted: that an effi-
cient search algorithm would form the foun-
dation of an immensely profitable company;
that software to enable peer-to-peer transfer
of copy written music would become availa-
ble on-line (or that this technology would
subsequently be deemed illegal); that the

entire genetic code of several species includ-
ing homo sapiens would be sequenced and
available on-line, leading to a new genera-
tion of biology researchers working without a
brick-and-mortar laboratory.

Software engineering is Money Magazine’s
top rated profession (Kalwarski, 2006). The

development of novel information systems
has created new industries and catapulted

developers to wealth and stardom. Yet, for
many students of computer and information

a system, software engineering is just
another hurdle they must jump to satisfy
degree requirements.

How best to teach software engineering so
that students appreciate its unique and vital
lessons remains an unanswered question.

Hazzan (2007) points out that mastering

software engineering requires the ability to
deal with "soft ideas", concepts that elude
formal definition. Soft ideas come into exis-
tence when the programmer is thinking
about a domain apart from the software.
Dealing with soft ideas is a skill that cannot
be explicitly taught; they have to be expe-

rienced to be understood. To create a novel

c© 2009 EDSIG http://isedj.org/7/40/ May 21, 2009

ISEDJ 7 (40) Stillman and Peslak 4

system, a programmer must almost instinc-
tively feel the connection between an un-
tapped domain and the power he knows a
computer system can bring to that domain.

Software engineering courses often fail to
convey to students the importance of the
topic they are teaching. Students tend to
believe that success in building information
systems requires just the technical know-
how to write code. Henry and LaFrance
(2006) stress the importance of active learn-

ing by engaging students in relevant
projects. Petcovic et al (2006) note that the
globalization of software requires graduates
to have experienced reasonable simulations
of the complexities of real-world software
development. Grisham et al (2006) go so

far toward real-world simulation as to inten-
tionally leave the project requirements va-
gue, so that the student must take responsi-
bility for this fundamental step in the devel-
opment process.

Promising new realms of endeavor often
spring from the unlikely combining of sepa-

rate disciplines. Evolutionary algorithms and
bioinformatics are two compelling examples.
Ali (2006) suggests multidisciplinary soft-
ware engineering projects, as for example a
software engineering student partnering with
an architecture student to create 3-
dimensional building visualization software.

Myers (2007) observes that in order for a
software engineering project to be really
educational, it must be a substantial endea-
vor not a "toy" application, despite the li-
mited time available; and it must involve a
meaningful domain.

The flash of insight that leads a visionary to
introduce computer technology to a new
domain requires creativity, knowledge of the
domain and of the technology, and, perhaps
most of all, the ability to think abstractly.
Kramer and Hazzan (2006), summarizing a
workshop on The Role of Abstraction in

Software Engineering, note that the partici-
pants agreed that abstraction should be
taught in software engineering courses, but
cautioned that abstraction "seems to be a
talent-laden skill: some will get it, many will
not, and a few will be very good at it."

Whether the application is advertising, mul-

timedia, or molecular biology, the develop-
ment of novel and useful software requires
that the developer integrate software engi-

neering with specialized knowledge of
another, unrelated discipline.

Several other researchers have noted the
importance of domain knowledge to success-

ful software engineering. Falbo, Guizzardi,
and Duarte (2002) suggest that domain
knowledge is essential to software reuse.
Maidantchik, Montoni, and Santos (2002)
observe that complex software systems re-
quire iterative development as the team
masters understanding of the domain. Ro-

billard (1999) in the Communications of the

ACM suggests “Software development is the
processing of knowledge in a very focused
way. We can say it is the progressive crys-
tallization of knowledge into a language that
can be read and executed by a computer.

The knowledge crystallization process is
directional, moving from the knowledge ap-
plication domain to software architectural
and algorithmic design knowledge, and end-
ing in programming language statements.”

Thus, in real-world software engineering, the
application of domain knowledge is the start-

ing point for software engineering projects.

2. METHODS

In our master's level software engineering
course, we assign the prototypical exercises,
but encourage the student to respond to
these exercises using a domain for which the

student possesses specialized knowledge or
interest.

Specifically, the student is asked to perform
each of the following steps of software de-
velopment for a sizable existing or imagined
system in one or more domains of his or her

choice:

• Outline the process that you would use to
build the system.

• Write a statement of scope.

• Create a functional decomposition, esti-
mate LOC, effort, and cost. (In the case
of an existing system, this question can

be answered using what the student
knows about the domain to reverse engi-
neer the software.)

• Give examples of pertinent data abstrac-
tions and the associated procedural ab-
stractions.

c© 2009 EDSIG http://isedj.org/7/40/ May 21, 2009

ISEDJ 7 (40) Stillman and Peslak 5

• Use code from your chosen domain to
illustrate examples of cohesion and
coupling.

At this point, the student is asked to do the

following major projects:

• Produce a comprehensive proposal for a
major software project involving a do-
main of your choice. The proposal should
include information such as Project Over-
view & Scope; Process & Project Man-
agement; Requirements Analysis & De-

sign; Feasibility Analysis; Coding, Testing
& Maintenance; Project Plan & Schedul-
ing; Risk Management; Ethical & Legal
Considerations; Delivery & Documenta-
tion; Conclusions

• Develop a working prototype of a portion

of the system that you proposed.

3. RESULTS

Many of our master's students are profes-
sionals. They represent a variety of indus-
tries. Therefore, it is not surprising that we
received submissions covering a reasonably

wide range of domains. Here are some ex-
amples:

Example 1

A manager for a major railroad company
developed a proposal to rail shippers, third-
party logistics companies, and shipping bro-

kers for a rail visibility and supply chain
management application.

Example 2

A software contractor to the US Army devel-
oped a three tier application used to update
the airfield approach maps that are used on

the U.S. Army utility and cargo helicopter
flight simulators instructor operator stations.

Example 3

A lead senior client server analyst for a ma-
jor cruise line with twenty years of expe-

rience in the industry developed a three tier
Cruise Line Client Reservation System.

Example 4

A student with a strong background in bio-
logical science proposed the development of
a web-based information system for a bioin-

formatics laboratory. We use this student’s
work as an example of the type of project
submitted.

The informational flow model in Figure 1 and
the scope and boundary diagram of Figure 2
illustrate scope of this ambitious project.

The 5-year cost of system development is

estimated at $750,000. The prototype sub-
mitted is a browser-based HTML/JSP client
layer with a Java Servlet architecture con-
necting to the database layer via a number
of problem domain and data access classes.
The database layer is a hybrid of a Microsoft
Access relational structure for internal data

and seamless data access class connectivity
to public databases of biological data. The
data-flow diagram in Figure 3 and the entity-
relationship diagram in Figure 4 show some
of the functionality that will be required for
this prototype.

Figure 5 is a screen print that shows a por-
tion of the actual functionality of the proto-
type system submitted for this project.

Student Feedback

The goals of our master’s level software
engineering course are to teach the devel-

opment of software-intensive systems, soft-
ware quality factors, software engineering
principles, system life-cycle models and pa-
radigms, requirements definition and analy-
sis, behavioral specification, software de-
sign, implementation, software testing tech-
niques, verification and validation, system

evolution, and software project manage-
ment.

End of semester evaluation forms were re-
viewed to determine the perceived efficacy
of the software development assignment
described in this paper.

Feedback from students enrolled in the three
semesters in which this project was assigned
revealed uniform agreement that this ap-
proach met the course goals. An example of
the type of feedback was that the approach
was a “comprehensive, well-organized, aca-
demically-enriching experience”.

4. DISCUSSION

There is little controversy that really perfect-
ing the skills required for successful software
engineering requires an active, hands-on
process. The question is how to optimize
the didactic experience. Our approach of

having the student select a familiar domain
for the final project has both benefits and
limitations.

c© 2009 EDSIG http://isedj.org/7/40/ May 21, 2009

ISEDJ 7 (40) Stillman and Peslak 6

Benefits

One can assign a specific task for a student
or a group of students to complete during

the semester, and perhaps that approach
would better simulate an industrial environ-
ment. But permitting self-selection of the
domain confers the following benefits:

Respecting the Student’s Talents: The
student can focus on the process of software
development, and is relieved from the need

to study an unfamiliar domain. The stu-
dent’s energies are channeled into the prac-
tice of system development. Van der Duim
et al (2007) include respecting students'
diverse talents as a best practice in software
engineering education.

Future Benefits to the Student and the

Industry: The project itself may provide a
springboard for the student's entry into sys-
tem development involving his or her own
profession. This may confer immediate ben-
efit to the student as an employee, the em-
ployer, and even the industry. Bernhart et

al (2006) feel that teaching software engi-
neering requires that the project framework
should reflect real-world applications. Tur-
han and Bener (2007) go even further: they
recommend, "simulating a chaotic environ-
ment" so that students' expectations will
match the reality of software development.

Potential Benefit to the Instructor: As an
interesting side effect, the professor ex-
pands his general knowledge of areas that
information systems development may
benefit.

Overcoming Some Obstacles

There are downsides to this approach. But
we believe these obstacles can be overcome.

Coordination of Group Projects: For ob-
vious reasons it is difficult to coordinate a
group project that allows students to select
the project domain. On the other hand,
when students collaborate on a project for

which only one member of the group has the
domain expertise, the resulting process be-
comes a reasonable simulation of real-world
software engineering.

The Instructor’s (Possibly Limited)

Knowledge of the Chosen Domain: In
the absence of in-depth knowledge of a par-

ticular domain, the professor may have a bit
of difficulty helping the student should prob-

lems occur during system development, and
then evaluating the resulting deliverables.
The former reflects a real-world concern
inherent in system development, but in

practice this is overcome routinely nonethe-
less. The latter has not been a problem in
our experience because the student's plan,
protocol, and prototype form a unit that,
when analyzed together, can be verified by
checking for internal consistency, and of
course the code can always be checked for

appropriate functionality. Furthermore,
there is a safety valve: students are re-
quired to obtain approval for their project
plan at the beginning of the course. This
gives the instructor an opportunity to re-
quest a change of plan if really necessary.

Finally, we emphasize that we utilize this
approach only in graduate-level courses.

Summary

In summary, we teach software engineering
by facilitating integration of the system de-
velopment process with a domain of particu-

lar interest to each student. The syllabus
provides guidelines, but each student
creates his own assignment. We believe
that this approach simulates the process by
which technological ingenuity drives the
emergence of new fields.

As philosopher-scientist Edward O. Wilson

(1998) observed, “… asking the right ques-
tion is more important than producing the
right answer. The right answer to a trivial
question is also trivial, but the right ques-
tion, even when insoluble in exact form, is a
guide to major discovery.”

5. ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their
insightful suggestions.

6. REFERENCES

Ali, M. R. 2006. Imparting effective software

engineering education. SIGSOFT Softw.
Eng. Notes 31, 4 (Jul. 2006), 1-3.

Bernhart, M., Grechenig, T., Hetzl, J., and
Zuser, W. 2006. Dimensions of software
engineering course design. In Proceeding
of the 28th international Conference on

Software Engineering (Shanghai, China,

May 20 - 28, 2006). ICSE '06. ACM Press,
New York, NY, 667-672.

c© 2009 EDSIG http://isedj.org/7/40/ May 21, 2009

ISEDJ 7 (40) Stillman and Peslak 7

Falbo, R. d., Guizzardi, G., and Duarte, K. C.
2002. An ontological approach to domain
engineering. In Proceedings of the 14th
international Conference on Software En-

gineering and Knowledge Engineering

(Ischia, Italy, July 15 - 19, 2002). SEKE
'02, vol. 27. ACM Press, New York, NY,
351-358.

Grisham, P. S., Krasner, H., and Perry, D. E.
2006. Data Engineering education with
real-world projects. SIGCSE Bull. 38, 2

(Jun. 2006), 64-68.

Hazzan, O. 2007. The influence of software
intangibility on computer science and
software engineering education. SIGSOFT
Softw. Eng. Notes 32, 3 (May. 2007), 7-
8.

Henry, T. R. and LaFrance, J. 2006. Inte-
grating role-play into software engineer-
ing courses. J. Comput. Small Coll. 22, 2
(Dec. 2006), 32-38.

Kalwarski, T., Mosher, D., Paskin, J., Rosato,
D. (2006, May) . Fifty best jobs in Amer-
ica. Money 35(5): 94-101.

Kramer, J. and Hazzan, O. 2006. The Role of
Abstraction in Software Engineering.
SIGSOFT Softw. Eng. Notes 31, 6 (Nov.
2006), 38-39.

Maidantchik, C., Montoni, M., and Santos, G.
2002. Learning organizational knowledge:
an evolutionary proposal for require-

ments engineering. In Proceedings of the
14th international Conference on Soft-

ware Engineering and Knowledge Engi-

neering (Ischia, Italy, July 15 - 19,
2002). SEKE '02, vol. 27. ACM Press,
New York, NY, 151-157.

Myers, J. P. 2007. A web emphasis in soft-
ware engineering. J. Comput. Small Coll.

22, 4 (Apr. 2007), 268-274.

Petkovic, D., Thompson, G., and Todtenhoe-
fer, R. 2006. Teaching practical software
engineering and global software engi-
neering: evaluation and comparison. In

Proceedings of the 11th Annual SIGCSE

Conference on innovation and Technology

in Computer Science Education (Bologna,
Italy, June 26 - 28, 2006). ITICSE '06.
ACM Press, New York, NY, 294-298.

Pressman, R. (2006) Software Engineering:
A Practioner’s Approach Sixth Edition

McGraw-Hill, New York.

Robillard, P. N. 1999. The role of knowledge
in software development. Commun. ACM

42, 1 (Jan. 1999), 87-92.

Turhan, B. and Bener, A. 2007. A Template
for Real World Team Projects for Highly

Populated Software Engineering Classes.
In Proceedings of the 29th international
Conference on Software Engineering
(May 20 - 26, 2007). International Confe-
rence on Software Engineering. IEEE
Computer Society, Washington, DC, 748-
753.

Van der Duim, L., Andersson, J., and Sinne-
ma, M. 2007. Good Practices for Educa-
tional Software Engineering Projects. In
Proceedings of the 29th international

Conference on Software Engineering
(May 20 - 26, 2007). International Confe-
rence on Software Engineering. IEEE

Computer Society, Washington, DC, 698-
707.

Wilson, E.O. 1998. Consilience: The Unity of
Knowledge. Vintage Books, Inc., New
York.

c© 2009 EDSIG http://isedj.org/7/40/ May 21, 2009

ISEDJ 7 (40) Stillman and Peslak 8

FIGURES

L a b

A d m in is t r a t i o n :

R e a d & W r i t e

A c c e s s t o S t a f f

I n f o

U n iv e r s i t y :

S t u d e n t & S t a f f

I n f o

W e b U s e r s : R e a d

A c c e s s t o B io

D a t a

L a b S t a f f : R e a d &

W r i t e A c c e s s t o

B io D a t a
B io D B

D a t a M in in g
E x t e r n a l B io lo g ic a l

D a t a b a s e s

Figure 1. The informational flow model of a student's proposed bioinformatics information sys-
tem.

c© 2009 EDSIG http://isedj.org/7/40/ May 21, 2009

ISEDJ 7 (40) Stillman and Peslak 9

Lab Staff

Demo-

graphic DB

Lab

Adminis-

tration

HRM

Registrar

Web

Users

External

Biological

DB

Internal

Biological

DB

Data

Mining
Lab Staff

Figure 2. A scope and boundaries diagram demonstrating a novel approach to combining a
university's information system with a laboratory's data generation and AI capability.

c© 2009 EDSIG http://isedj.org/7/40/ May 21, 2009

ISEDJ 7 (40) Stillman and Peslak 10

Lab Staff

Control Panel

Administrator

Interface

User Commands & Data

System Update Commands &

Data
Outside User

Interface

User Requests & Data

Online

Databases

Internal

Databases

Existing Biomolecular Data

Interact with Staff

Search Online DB

View or Update

Internal Bio DB

Search Bio DataDisplay Web Menu

Display Lab Menu

Validate User

User Name & Password

User Details

Lab M
enu C

hoice
s

Display System Menu

View or Update

Internal

Demographic DB

System Commands & Data

Demographic Data

Web Menu Options

Biomolecular Data
Biomolecular Data

Existing Biomolecular Data

Figure 3. A data-flow diagram of a portion of the system. If he didn't appreciate it before, the
complexity of engineering a system of this magnitude is now apparent to the student. Soft-
ware engineering is more than just writing code.

c© 2009 EDSIG http://isedj.org/7/40/ May 21, 2009

ISEDJ 7 (40) Stillman and Peslak 11

Laboratory

PK labNo

 labName

 location

 telephone

 supervisorUserName

Staff

PK userName

 password

 lastName

 firstName

 position

FK1,I1 labNo

Experiment

PK exptNo

FK1,I1 userName

FK2,I2 projectNo

 descr

FK3,I3 tissueNo

Project

PK projectNo

 projectName

 projectDescr

Works In

*

Performed By
*

Part Of
*

Organism

PK organismNo

 scientificName

 commonName

 mutantType

Performed On
*

Protein

PK,FK1,I1 biomoleculeNo

U1 pdbCode

 type

 molecularWt

 aminoAcidSequence

DNA

PK,FK1,I1 biomoleculeNo

U1 genBankCode

 chromosome

 length

FK2,I2 codesFor

 baseSequence

Biomolecule

PK biomoleculeNo

 scientificName

 commonName

FK1,I1 tissueNo

Comes From
*

Codes For
*

Promoter

PK,FK1,I1 biomoleculeNo

 location

 comment

Intron

PK,FK1,I1 biomoleculeNo

 priorResidueNo

Gene

PK,FK1,I1 biomoleculeNo

 type

FK2,I2 codesFor

FK3,I3 promoter

Codes For

*

Controlled By
*

Tissue

PK tissueNo

FK1,I1,U1 organismNo

FK2,I2,U1 tissueTypeNo

Comes From
*

TissueType

PK tissueTypeNo

 tissueTypeName

Of Type

*

Figure 4. An entity-relationship diagram of the portion of the system the student has imple-
mented in the prototype.

c© 2009 EDSIG http://isedj.org/7/40/ May 21, 2009

ISEDJ 7 (40) Stillman and Peslak 12

Figure 5. A screen print of the web interface to the student's prototype system. The code
behind this page utilizes a variety of technologies including HTML, Javascript, and JSP.

c© 2009 EDSIG http://isedj.org/7/40/ May 21, 2009

