
Volume 7, Number 61 http://isedj.org/7/61/ June 22, 2009

In this issue:

A Two-Page “OO Green Card” for Students and Teachers

Leslie J. Waguespack, Jr.
Bentley University

Waltham, MA 02154-4705 USA

Abstract: Long before the current political turbulence surrounding immigration became so wide-
spread almost everyone in the computing industry recognized the term “green card” as a pocket-sized
reference document describing the most commonly required detail-knowledge about a computer’s
architecture (e.g. IBM 360 Green Card). It placed at ready-reach the details of formats, opera-
tions, resource locations and encodings that defined the immutable structures that a machine-level
programmer would need to hold close during the programming and debugging of system software.
The metaphor is used here to describe an attempt to provide the same ready-reach reference to
the immutable details of the object-oriented paradigm by means of a highly distilled explanation of
the terminology and operational relationships – language usually referred to as an “ontology.” The
object-oriented paradigm has been “mainstream” in IS education for ten years and for some twenty
years it’s been “mainstream” in IS development. Although familiar with the syntax of one or more
OO programming languages, the underlying OO concepts remain a mystery to many IS students.
And if the current crop of IS textbooks are any indication, they remain somewhat of a mystery to
many IS educators. The “green card” described here attempts to address both concerns: offering
a programming language-independent explanation of OO concepts and delivering it in a condensed
format that can underpin pedagogy across implementations, languages and methodologies.

Keywords: object-oriented paradigm, object-oriented ontology, object-oriented pedagogy, object-
orientation, object-orientation quick reference

Recommended Citation: Waguespack (2009). A Two-Page “OO Green Card” for Students and
Teachers. Information Systems Education Journal, 7 (61). http://isedj.org/7/61/. ISSN:
1545-679X. (A preliminary version appears in The Proceedings of ISECON 2007: §3743. ISSN:
1542-7382.)

This issue is on the Internet at http://isedj.org/7/61/

ISEDJ 7 (61) Information Systems Education Journal 2

The Information Systems Education Journal (ISEDJ) is a peer-reviewed academic journal
published by the Education Special Interest Group (EDSIG) of the Association of Information
Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1545-679X. • First issue: 8 Sep 2003.
• Title: Information Systems Education Journal. Variants: IS Education Journal; ISEDJ. • Phys-
ical format: online. • Publishing frequency: irregular; as each article is approved, it is published
immediately and constitutes a complete separate issue of the current volume. • Single issue price:
free. • Subscription address: subscribe@isedj.org. • Subscription price: free. • Electronic access:
http://isedj.org/ • Contact person: Don Colton (editor@isedj.org)

2009 AITP Education Special Interest Group Board of Directors

Don Colton
Brigham Young Univ Hawaii
EDSIG President 2007-2008

Thomas N. Janicki
Univ NC Wilmington
EDSIG President 2009

Kenneth A. Grant
Ryerson University
Vice President 2009

Kathleen M. Kelm
Edgewood College

Treasurer 2009

Wendy Ceccucci
Quinnipiac Univ
Secretary 2009

Alan R. Peslak
Penn State

Membership 2009
CONISAR Chair 2009

Steve Reames
Angelo State Univ
Director 2008-2009

Michael A. Smith
High Point

Director 2009

George S. Nezlek
Grand Valley State
Director 2009-2010

Patricia Sendall
Merrimack College
Director 2009-2010

Li-Jen Shannon
Sam Houston State
Director 2009-2010

Albert L. Harris
Appalachian St

JISE Editor

Paul M. Leidig
Grand Valley State University

ISECON Chair 2009

Information Systems Education Journal Editors

Don Colton
Brigham Young University Hawaii

Editor

Thomas N. Janicki
Univ of North Carolina Wilmington

Associate Editor

Information Systems Education Journal 2007-2008 Editorial Review Board

Sharen Bakke, Cleveland St
Alan T. Burns, DePaul Univ
Wendy Ceccucci, Quinnipiac U
Janet Helwig, Dominican Univ
Scott Hunsinger, Appalachian
Kamal Kakish, Lawrence Tech
Sam Lee, Texas State Univ
Paul Leidig, Grand Valley St
Terri L. Lenox, Westminster

Anene L. Nnolim, Lawrence Tech
Alan R. Peslak, Penn State

Doncho Petkov, E Connecticut
James Pomykalski, Susquehanna

Steve Reames, Angelo State
Samuel Sambasivam, Azusa Pac
Bruce M. Saulnier, Quinnipiac
Patricia Sendall, Merrimack C

Li-Jen Shannon, Sam Houston St
Michael A. Smith, High Point U
Robert Sweeney, South Alabama

Stuart A. Varden, Pace Univ
Judith Vogel, Richard Stockton

Bruce A. White, Quinnipiac Univ
Belle S. Woodward, S Illinois U

Charles Woratschek, Robert Morris
Peter Y. Wu, Robert Morris Univ

EDSIG activities include the publication of ISEDJ and JISAR, the organization and execution of
the annual ISECON and CONISAR conferences held each fall, the publication of the Journal of
Information Systems Education (JISE), and the designation and honoring of an IS Educator of the
Year. • The Foundation for Information Technology Education has been the key sponsor of ISECON
over the years. • The Association for Information Technology Professionals (AITP) provides the
corporate umbrella under which EDSIG operates.

c© Copyright 2009 EDSIG. In the spirit of academic freedom, permission is granted to make and
distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document
is presented, and it is not modified in any substantial way.

c© 2009 EDSIG http://isedj.org/7/61/ June 22, 2009

ISEDJ 7 (61) Waguespack 3

A Two-Page “OO Green Card”

For Students and Teachers

Leslie J. Waguespack, Jr., Ph.D
LWaguespack@Bentley.edu

Computer Information Systems Department
Bentley University

Waltham, Massachusetts 02154-4705, USA

Abstract

Long before the current political turbulence surrounding immigration became so wide-spread

almost everyone in the computing industry recognized the term “green card” as a pocket-sized

reference document describing the most commonly required detail-knowledge about a com-

puter’s architecture (e.g. IBM 360 Green Card). It placed at ready-reach the details of for-

mats, operations, resource locations and encodings that defined the immutable structures that

a machine-level programmer would need to hold close during the programming and debugging

of system software. The metaphor is used here to describe an attempt to provide the same

ready-reach reference to the immutable details of the object-oriented paradigm by means of a

highly distilled explanation of the terminology and operational relationships – language usually

referred to as an “ontology.” The object-oriented paradigm has been “mainstream” in IS edu-

cation for ten years and for some twenty years it’s been “mainstream” in IS development.

Although familiar with the syntax of one or more OO programming languages, the underlying

OO concepts remain a mystery to many IS students. And if the current crop of IS textbooks

are any indication, they remain somewhat of a mystery to many IS educators. The “green

card” described here attempts to address both concerns: offering a programming language-

independent explanation of OO concepts and delivering it in a condensed format that can un-

derpin pedagogy across implementations, languages and methodologies.

Keywords: object-oriented paradigm, object-oriented ontology, object-oriented pedagogy,

object-orientation, object-orientation quick reference

1. INTRODUCTION

The object-oriented paradigm has been in

the “mainstream” of information system de-

velopment for the last two decades. It has

been “mainstream” in IS education for at

least the last decade. In many instances the

only exposure that students and some facul-

ty have to the object-oriented paradigm

comes through tools and programming lan-

guages all of which represent not only an

incomplete subset of object-oriented con-

cepts but, they often also include interpreta-

tions, additions and omissions that serve

their respective designers’ opinions for effi-

ciency and/or convenience. Needless to say,

these designers’ primary goals do not em-

phasize paradigm clarity.

The fact that equilibrium in the interpreta-

tion of the OO paradigm is yet unattained is

evidenced in a recent journal article that

attempted to define the fundamental aspects

of the object-oriented paradigm through the

“democratic” approach of counting the oc-

currence of OO terms used in academic pub-

lications. (Armstrong 2006) While this ap-

proach sheds light on the terminology that

garners the most attention in academic dis-

course it’s value as a paradigm definition is

somewhat dubious. Other evidence that the

OO paradigm remains somewhat of a mys-

tery among IS educators are the numerous

spurious explanations that are found in con-

temporary IS textbooks on analysis and de-

sign as reported in a survey on the textbook

treatment of modeling. (Waguespack 2006)

And at a recent international conference on

c© 2009 EDSIG http://isedj.org/7/61/ June 22, 2009

ISEDJ 7 (61) Waguespack 4

IS education one enthusiastic presenter ex-

plained that employing the Unified Modeling

Language (UML) for data modeling required

no adaptation in pedagogy because there

was no appreciable difference modeling us-

ing the object-oriented paradigm versus the

entity-relationship model!

Although it may be true that the only valid

definition of a programming language exists

in the implementation of its compiler, that

does not seem to be an appropriate means

of defining the object-oriented paradigm nor

establishing a pedagogy for expressing it.

Therefore implementation is a banished ele-

ment in this attempt at describing the ob-

ject-oriented paradigm and the explanation

found in the “two-page OO green card” relies

only on the abstractions distilled from se-

minal expositions of the concepts as found in

original descriptions. (Dahl 1966, Wegner

1990) The interested reader can find a

more complete history of the object-oriented

paradigm in (Capretz 2003).

2. THE OO PARADIGM WITHOUT

LANGUAGE OR SYNTAX

Every language that is invented to express

concepts carries with it the understanding

and the biases of the inventor. Depending

on his/her purpose(s) those biases simplify

certain tasks performed with the language

but, may obscure underlying concepts.

As a special case programming language

design in addition must cope with the feasi-

bility of automated translation and interope-

rability with other programming languages

and operating systems. Designers must

consider upward, downward, and cross-

compatibility within versions of a program-

ming language. Compromises and assump-

tions are chosen to make the resulting lan-

guage efficient, effective and marketable.

The goal of this description of the object-

oriented paradigm is to strip away the

extraneous facets that programming lan-

guage design must use to achieve their

“practical” product requirements; and in so

doing to succinctly make the underlying ob-

ject-oriented paradigm concepts evident and

understandable. This is an ambitious task to

say the least! But, if it may be achieved, it

provides a knowledge-base that the teacher

and student can carry from one object-

oriented programming language to another

exposing how they treat an OO concept alike

or how they treat it differently.

3. ONTOLOGY OF THE OBJECT-

ORIENTED PARADIGM

The ontology presented here is consistent

with the practice in computer science and

information science categorizing a domain of

concepts (i.e. individuals, attributes, rela-

tionships and classes). This ontology of the

object-oriented paradigm attempts to es-

chew the vestiges of implementation lan-

guages and development methodologies in

order to expose the core nature and value of

object-oriented concepts. The object-

oriented ontology is arranged as follows

(and is depicted graphically in the map in

Figure 1 below while an illustration of the

two-page rendering of the “green card” is

found in appendix A):

A. Individuals

B. Attributes

o Data Attributes

o Behavioral Attributes

C. Classes

D. Relationships

o Structural Relationships

� Inheritance

o Behavioral Relationships

� Association

� Message Passing

� Polymorphism

Figure 1 – Object-Oriented Concept Map

Individuals – The most concrete concept in

the object-oriented paradigm is the object.

It derives from the living physical experience

of humans seeing and touching things. In

that experience objects are separable – dis-

tinguishable from other objects by nature of

c© 2009 EDSIG http://isedj.org/7/61/ June 22, 2009

ISEDJ 7 (61) Waguespack 5

their physical presence and location regard-

less of any other discernible characteristics

they may possess. This characteristic of

“individual-ness“ leads to the property of

identity. Identity enables the unambiguous

designation or selection of every object

(physical or abstract) within a domain of

discourse. Objects have an “inside,” an

“outside,” and a “surface” that separates the

inside from the outside. An object contains

anything that exists on the “inside” of the

object. Since the surface of most physical

objects is opaque, usually the contents are

invisible and untouchable by anyone on the

outside. This property renders the object’s

contents impervious to meddling and is

called encapsulation (or information hiding).

Attributes – Attributes are those charac-

teristics that are inherent to an object.

In the object paradigm attributes define

either data or behavioral characteristics

- each of which has a static and dynam-

ic form. Attributes in static form com-

bine to define what is called the struc-

ture of an object. From inception to ex-

tinction the structure of an object is

immutable.

Data Attributes – Data attributes serve

to store information (data) within an

object and implement the property of

remembrance. Data attributes are

completely contained within an object

protected by encapsulation. Remem-

brance is manifest statically as “what

can be remembered,” a data attribute

variable. It is manifest dynamically as

a definition of “what is remembered,” a

particular data attribute value.

Behavioral Attributes – Behavioral attributes

serve to define the animate nature of an ob-

ject. In its static form each behavioral

attribute defines “what an object can do,”

usually called a service. In its corresponding

dynamic form this behavioral attribute de-

fines “how a service is accomplished,” usual-

ly called a method (or operation). Methods

define “activity” performed in an object

model. A method may simply be access to

remembrance inside an object or it may be

complex sometimes employing the involve-

ment of other services of the same or other

objects to accomplish its responsibility. Me-

thods reside within the object subject to en-

capsulation while services are visible at the

surface of the object available for collabora-

tion.

Classes – The class concept combines

both a definition of structure and the

generation of object(s) based on that

structure. Every object is an instance

of a specific class and shares the same

static structure defined by that class

with every other object of that class.

The responsibility of generating in-

stances that share the same structure is

the property of progeny. The class con-

cept thereby fuses the existence of the

objects to that of their class; objects

cannot exist independent of their defin-

ing class. Objects are said to be mem-

bers of their class. Along with the static

behavioral structure of service defined

in the class, the dynamic behavioral

attribute, method, may also be defined.

Defined in the class this dynamic beha-

vioral attribute, “how a service is ac-

complished,” is also identical for each

and every object generated of that

class.

Relationships – Relationships in the ob-

ject paradigm exist on two dimensions:

structural and behavioral.

Structural Relationships – The structural

relationship is based primarily on the

properties of identity, remembrance

and progeny.

Inheritance – Inheritance is a relationship

between classes. The structure defined

in one class is used as the foundation of

structure in another. By foundation it is

meant that all the structure of the first

is replicated in the second and addition-

al structure in terms of data attributes

or services may be added or methods

for replicated services may be altered

(overridden). The replicated structure

defines how the two classes are alike.

The additions or alterations define how

they are different. The class defining all

the structure shared between them is

called the parent class (super class, ge-

neralization) while the other is called

the child class (sub class, specializa-

tion). It is said that the child class

proceeds from or is derived from the

parent class. Successive application of

inheritance defining related classes re-

sults in a class hierarchy.

c© 2009 EDSIG http://isedj.org/7/61/ June 22, 2009

ISEDJ 7 (61) Waguespack 6

Behavioral Relationships – The beha-

vioral relationships are based primarily

on the property of membership IN, and

the capacity of objects to “act.”

Association – An association is a relation-

ship between objects. Objects are in-

trinsically separable by way of the iden-

tity property. At the same time, hu-

mans are compelled to categorize their

experience of things in the physical

world. Humans superimpose groupings

that collect objects into sets (a founda-

tion of mathematics based on human

experience). Objects become members

in a group only by designation. This

property is called membership in.

Membership in is independent of identi-

ty or attribute. This property also per-

mits humans to identify an object that

is not in a set (i.e. discrimination).

(Membership in a group is discretionary

and is distinct from membership of a

class that is intrinsic by way of proge-

ny.) Variations on membership derive

from the intent of the relationship and

generally fall into the categories of as-

sociation and composition. Any desig-

nated collection of objects defines a re-

lationship between those objects called

association. By the simple fact that

they are members in the same relation-

ship that membership defines how they

relate. When the existence of the ob-

jects themselves is coupled with their

membership; that is to say, if one (or

the other or both) would not exist if it

were not related to the other then the

relationship is called a composition.

Message Passing – Message passing is a

relationship between objects. Message

passing relies on the identity property

and services. A message is a communi-

cation between a sender object and re-

ceiver object where the sender requests

that the receiver render one of its ser-

vices. The sender and receiver may be

one in the same object. The message

designates the receiver’s identity, the

receiver’s service to be performed along

with any parameters that the service’s

protocol may require. Since the mes-

sage is a request there are no implicit

timing constraints determining when

the service is accomplished. Unless ex-

plicitly designated a message results in

an asynchronous activity on the part of

the receiver without acknowledgment or

returned information.

Polymorphism – Polymorphism results

from the interplay of message passing,

behavioral attributes and classes. A

sender directs a message to a receiver

designating a service of that receiver.

A message does not designate a me-

thod. The regime that determines

which method satisfies a service re-

quest is called binding. If the method

(corresponding to the service) is de-

fined in the class of the receiver object,

that method is invoked. If the service

of the receiver’s class is inherited (and

not overridden), the corresponding me-

thod defined in the nearest progenitor

(parent class) of the receiving object’s

class is invoked.

4. DISCUSSION

By design this ontology omits a variety of

object-oriented language characteristics that

are a matter of designer’s choice rather than

paradigm. There are myriad examples. Here

are but a very few.

OO languages treat encapsulation in rich

variety. Visibility and accessibility rules in

C++ are governed by the arrangement of

programming elements in the file structure

of the source code text – the inclusion or

repetition of “headers.” (Stroustrup 1986)

Java approaches the issue with a variety of

visibility options: private, protected and

public. (Schildt 2007) Languages such as

Smalltalk adhere to the paradigm description

above more strictly by preventing any

access to object attributes except via the

agency of an object’s services. (Goldberg

1983)

Inheritance is likewise treated with variety.

Some languages like Smalltalk allow only a

single parent class for any child class while

other languages like C++ permit multiple

parents. This distinction leads to numerous

issues that must be considered when the

paradigm reaches the stage of methodology

and implementation, but these issues do not

involve the nature of the OO paradigm and

eventually fall into the arena of style prefe-

rences. And as such they become the matter

of quality assessment rather than paradigm

definition.

c© 2009 EDSIG http://isedj.org/7/61/ June 22, 2009

ISEDJ 7 (61) Waguespack 7

Some OO programming languages treat the

definition of structure that is the class as an

object itself (i.e. “classes are ‘first-class’ ob-

jects”). In this interpretation, along with

their definitional role providing the template

of structure for their progeny, each class is

also an object – sometimes with its own da-

ta and behavioral attributes distinct from

those designated for its “offspring.”

In terms of paradigm comparison the prop-

erty of identity defined in this ontology casts

into clear distinction the notion of identity in

the entity-relationship model that remains

the predominant paradigm for data and da-

tabase modeling. In the OO ontology identity

is independent of its realization: “Identity

enables the unambiguous designation or se-

lection of every object (physical or abstract)

within a domain of discourse.” In most ob-

ject-oriented implementations the identity of

an object is realized by an “object identifier”

in some form that sustains the object’s

unique identity regardless of any of its

attributes. In the entity-relationship model-

ing paradigm however, the identity of an

instance is determined by a unique (and

therefore unambiguous) combination of

attribute values collectively referred to as a

candidate key or by designation the primary

key. (Wegner 1990)

5. SUMMARY

In this very short presentation we propose a

succinct, compact description of the object-

oriented paradigm without the embellish-

ments or compromises often necessary to

support computer-based translation (as in a

compiled language) or a graphically aug-

mented representation such as UML. The

ontology is derived from the very earliest of

conceptions of the object-oriented paradigm

at a time before there was competition for

commercial-dominance, language or metho-

dology standardization. The primary value

of this approach to explaining the object-

oriented paradigm is two-fold.

First, absent the accidents of implementation

that accompany all programming languages

both the student and teacher of object-

orientation have a basis for discriminating

between those features that are essential to

the paradigm and those that are accidental

to an implementation of it. (Brooks 1987) It

also facilitates assessing OO’s role in more

advanced applications of the paradigm (e.g.

in areas such as reuse and component-

based systems engineering). (Waguespack

and Schiano 2006)

Second, the individual characteristics de-

picted are primarily elemental. These cha-

racteristics may be readily distinguished

from one another and identified in other pa-

radigms of modeling and programming lan-

guages thus permitting pedagogies to

emerge patterned after Ledgard’s “ten mini-

languages.” (Ledgard 1971).

Object-orientation has been likened to a re-

ligion with its saints, zealots and heretics.

For that reason and the fact that at its core

it is a framework or pattern for creating ab-

stractions, conceptions in the human mind,

it may not be possible to find a unique de-

piction of the paradigm itself. As with all

models, this explanatory model for the ob-

ject-oriented paradigm cannot be judged as

perfect, but perhaps it may be judged as

useful.

6. ACKNOWLEDGEMENTS

Special thanks are due my colleagues in

Computer Information Systems at Bentley

University for their insightful discussions and

comments on several earlier drafts of these

ideas and to Bentley’s administration for the

continuing support of this exploration.

Thanks also to the computing faculty at the

University of South Alabama who provided

an opportunity for and contributed to some

the earliest discussions of this work. Thanks

to the ISECON community (organizers, edi-

tors, reviewers and participants) for continu-

ing to support a venue where ideas and dis-

cussions of information systems education

can be aired and debated for the benefit of

all our students and our disciplines.

7. REFERENCES

Armstrong, D. J (2006) “The quarks of ob-

ject-oriented development,” Communica-

tions of the ACM, 49, 2 (February): pp.

123-128.

Brooks, Frederick P. (1987) "No Silver Bul-

let: Essence and Accidents of Software

Engineering," Computer, Vol. 20, No. 4

(April) pp. 10-19.

Capretz, L. F. (2003) “A brief history of the

object-oriented approach.” SIGSOFT

c© 2009 EDSIG http://isedj.org/7/61/ June 22, 2009

ISEDJ 7 (61) Waguespack 8

Software Engineering Notes Vol. 28, No.

2 (March), p. 6.

Dahl, O. J. and Nygaard, K. (1966) “Simula:

An Algol-Based Simulation Language,”

Communications of the ACM, Vol. 9, No.

9, (September), pp. 671-678.

Goldberg, A. and Robson, D. (1983) Small-

talk 80: The Language and its Implemen-

tation, Addison-Wesley, Reading, Massa-

chusetts

Ledgard, H. F. (1971) “Ten Mini-Languages:

A Study of Topical Issues in Programming

Languages.” ACM Computing Surveys

Vol. 3, No. 3 (Sep.), pp. 115-146.

Schildt, Herbert (2007) Java™: The Com-

plete Reference, Seventh Edition,

McGraw-Hill Osborne Media, Two-Penn

Plaza, New York, NY

Stroustrup, Bjarne (1986) The C++ Pro-

gramming Language, Addison-Wesley,

Reading, Massachusetts

Waguespack, L.J. (2006) “Metaphors, Poly-

morphism, Domain Analysis, and Reuse:

Teaching Modeling in the Object-Oriented

Paradigm.” Information Systems Educa-

tion Journal, 4 (81), (2006)..

http://isedj.org/4/81/. ISSN: 1545-679X

Waguespack, L.J. and Schiano, W.T. (2006)

A Reuse Reference Grid for Strategic

Reuse Goals Assessment, Proceedings of

the 39th Annual Hawaii International

Conference on System Sciences

(HICSS'06)

Wegner, P. (1990) “Concepts and paradigms

of object-oriented programming.”

SIGPLAN OOPS Messenger, Vol. 1, No 1.

(August), pp. 7-8

Appendix A

Green Card Illustration

The OO Green Card may be effectively re-

produced as the front and back of a single

8.5” x 11” sheet of paper. Terms used with

special meaning are italicized. Those initially

defined are also bolded.

c© 2009 EDSIG http://isedj.org/7/61/ June 22, 2009

ISEDJ 7 (61) Waguespack 9

c© 2009 EDSIG http://isedj.org/7/61/ June 22, 2009

ISEDJ 7 (61) Waguespack 10

c© 2009 EDSIG http://isedj.org/7/61/ June 22, 2009

